Publications by authors named "Miao-Mei Yu"

Objective: Cervical cancer is one of the leading fatal diseases in women, and the role of Apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) in cervical cancer is uncertain.

Methods: Four Gene Expression Omnibus (GEO) mRNA microarray datasets were analyzed to identify differentially expressed genes (DEGs) between cervical cancer and normal cervical tissues. The results were validated using a The Cancer Genome Atlas (TCGA)-cervical cancer (CESC) dataset.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3 (NFE2L3), also known as NRF3, is a member of the cap 'n' collar basic-region leucine zipper family of transcription factors. NFE2L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated.

View Article and Find Full Text PDF

Background: Scavenger receptor BI (SR-BI) is a classic high-density lipoprotein (HDL) receptor, which mediates selective lipid uptake from HDL cholesterol esters (HDL-C). Apolipoprotein M (ApoM), as a component of HDL particles, could influence preβ-HDL formation and cholesterol efflux. The aim of this study was to determine whether SR-BI deficiency influenced the expression of ApoM.

View Article and Find Full Text PDF

It had been demonstrated that apolipoprotein M (apoM) is an important carrier of sphingosine-1-phosphate (S1P) in blood, and the S1P has critical roles in the pathogenesis of sepsis-induced acute lung injury (ALI). In the present study, we investigated whether apoM has beneficial effects in a mouse model after lipopolysaccharide (LPS)-induced ALI. Forty-eight mice were divided into two groups: male C57BL/6 wild-type (apoM) group (n = 24) and apoM gene-deficient (apoM) group (n = 24) and then randomly subdivided into four subgroups (n = 6 each) according to different intraperitoneal (i.

View Article and Find Full Text PDF

Apolipoprotein M (ApoM) and the vitamin D receptor (VDR) are apolipoproteins predominantly presenting in high-density lipoprotein (HDL) and a karyophilic protein belonging to the steroid‑thyroid receptor superfamily, respectively. Previous studies have demonstrated that ApoM and VDR are associated with cholesterol metabolism, immune and colorectal cancer regulation. In order to investigate whether ApoM affected the expression of VDR in colorectal cancer cells, a single‑tube duplex fluorescence reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) system was developed to simultaneously detect the mRNA levels of VDR and GAPDH in HT‑29 cells overexpressing ApoM.

View Article and Find Full Text PDF

Background: We have previously demonstrated that estrogen could significantly enhance expression of apolipoprotein M (apoM), whereas the molecular basis of its mechanism is not fully elucidated yet. To further investigate the mechanism behind the estrogen induced up-regulation of apoM expression.

Results: Our results demonstrated either free 17β-estradiol (E2) or membrane-impermeable bovine serum albumin-conjugated E2 (E2-BSA) could modulate human apoM gene expression via the estrogen receptor alpha (ER-α) pathway in the HepG2 cells.

View Article and Find Full Text PDF