Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a promising noninvasive neuromodulatory treatment option for multiple neurologic and psychiatric disorders, but its mechanism of action is still poorly understood. Adult hippocampal neurogenesis (AHN) continues throughout life and is crucial for preserving several aspects of hippocampal-dependent cognitive functions. Nevertheless, the contribution of AHN in the neuromodulatory effects of tDCS remains unexplored.
View Article and Find Full Text PDFBackground: Transcranial direct current stimulation (tDCS) provides a noninvasive polarity-specific constant current to treat epilepsy, through a mechanism possibly involving excitability modulation and neural oscillation.
Objective: To determine whether EEG oscillations underlie the interictal spike changes after tDCS in rats with chronic spontaneous seizures.
Methods: Rats with kainic acid-induced spontaneous seizures were subjected to cathodal tDCS or sham stimulation for 5 consecutive days.
Status epilepticus (SE) is a state of prolonged and repeated seizures that can lead to permanent brain damage or life-threatening conditions. Transcranial direct current stimulation (tDCS) non-invasively provides a polarity-specific electric current to modulate brain excitability. Little is known about the therapeutic potential of tDCS in SE.
View Article and Find Full Text PDFTranscranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate neuronal excitability via externally applied electric fields. Despite the positive effects of tDCS in a wide range of neurological disorders in humans, its mechanism of action remains poorly understood. Here we investigated cellular and molecular mechanisms underlying the aftereffects of anodal tDCS on the induction of long-term potentiation (LTP), a cellular correlate of learning and memory, at Schaffer collateral-CA1 synapses.
View Article and Find Full Text PDFBackground: Cognitive dysfunction is commonly observed in diabetic patients. We have previously reported that anodal transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex can facilitate visuospatial working memory in diabetic patients with concomitant diabetic peripheral neuropathy and mild cognitive impairment, but the underlying mechanisms remain unclear.
Objective: We investigated the cellular mechanisms underlying the effect of tDCS on cognitive decline in streptozotocin (STZ)-induced diabetic rats.