Publications by authors named "Miao-Chan Tsai"

Light-emitting sources and devices permeate every aspect of our lives and are used in lighting, communications, transportation, computing, and medicine. Advances in multifunctional and "smart lighting" would require revolutionary concepts in the control of emission spectra and directionality. Such control might be possible with new schemes and regimes of light-matter interaction paired with developments in light-emitting materials.

View Article and Find Full Text PDF

Some specific designs on the electron blocking layer (EBL) of blue InGaN LEDs are investigated numerically in order to improve the hole injection efficiency without losing the blocking capability of electrons. Simulation results show that polarization-induced downward band bending is mitigated in these redesigned EBLs and, hence, the hole injection efficiency increases markedly. The optical performance and efficiency droop are also improved, especially under the situation of high current injection.

View Article and Find Full Text PDF

The advantages of blue InGaN light-emitting diodes (LEDs) with AlGaN barriers are studied numerically. The performance curves, energy band diagrams, electrostatic fields, and carrier concentrations are investigated. The simulation results show that the InGaNAlGaN LED has better performance than its conventional InGaNGaN counterpart owing to the increase of hole injection and the enhancement of electron confinement.

View Article and Find Full Text PDF