Publications by authors named "Mia Smith"

While autoreactive T cells are known to induce β-cell death in type 1 diabetes (T1D), self-reactive B cells also play an important role in the pathogenesis of T1D. Studies have shown that individuals living with T1D have an increased frequency of self-reactive B cells that escape from the bone marrow and populate peripheral organs, become activated, and participate in disease. These failed tolerance mechanisms may be attributed to genetic risk alleles that are associated with the development of T1D.

View Article and Find Full Text PDF

Context: Poor knee biomechanics contribute to knee joint injuries. Neuromuscular control over knee position is partially derived from the hip. It is unknown whether isolated activation training of the gluteal muscles improves lower-extremity frontal plane mechanics.

View Article and Find Full Text PDF

Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). To better understand their contribution, we performed single cell gene and BCR-seq analysis on pancreatic islet antigen-reactive (IAR) B cells from the peripheral blood of nondiabetic (ND), autoantibody positive prediabetic (AAB), and recent-onset T1D individuals. We found that the frequency of IAR B cells was increased in AAB and T1D.

View Article and Find Full Text PDF

Introduction: Most childhood-onset SLE patients (cSLE) develop lupus nephritis (cLN), but only a small proportion achieve complete response to current therapies. The prognosis of children with LN and end-stage renal disease is particularly dire. Mortality rates within the first five years of renal replacement therapy may reach 22%.

View Article and Find Full Text PDF

The COVID-19 pandemic coincided with several transformative advances in single-cell analysis. These new methods along with decades of research and trials with antibody therapeutics and RNA based technologies allowed for highly effective vaccines and treatments to be produced at astonishing speeds. While these tools were initially focused on models of infection, they also show promise in an autoimmune setting.

View Article and Find Full Text PDF

Recent evidence suggests a role for B cells in the pathogenesis of young-onset type 1 diabetes (T1D), wherein rapid progression occurs. However, little is known regarding the specificity, phenotype, and function of B cells in young-onset T1D. We performed a cross-sectional analysis comparing insulin-reactive to tetanus-reactive B cells in the blood of T1D and controls using mass cytometry.

View Article and Find Full Text PDF

Double negative (DN) B cells (CD27-IgD-) comprise a heterogenous population of DN1, DN2, and the recently described DN3 and DN4 subsets. In autoimmune disease, DN2 cells are reported to be precursors to autoreactive antibody secreting cells and expansion of DN2 cells is linked to elevated interferon levels. Severe SARS-CoV-2 infection is characterized by elevated systemic levels of pro-inflammatory cytokines and serum autoantibodies and expansion of the DN2 subset in severe SARS-CoV-2 infection has been reported.

View Article and Find Full Text PDF

Severe SARS-CoV-2 infection is associated with strong inflammation and autoantibody production against diverse self-antigens, suggesting a system-wide defect in B cell tolerance. BND cells are a B cell subset in healthy individuals harboring autoreactive but anergic B lymphocytes. In vitro evidence suggests inflammatory stimuli can breach peripheral B cell tolerance in this subset.

View Article and Find Full Text PDF

Objective: Previous pandemics may offer evidence on mediating factors that contributed to disparities in infection and poor outcomes, which could inform the effort to mitigate potential unequal outcomes during the current COVID-19 pandemic. This systematic review sought to examine those factors.

Methods: We searched MEDLINE, PsycINFO, and Cochrane to May 2020.

View Article and Find Full Text PDF

Autoimmune thyroid disease (AITD) is caused by aberrant activation of the immune system allowing autoreactive B and T cells to target the thyroid gland leading to disease. Although AITD is more frequently diagnosed in adults, children are also affected but rarely studied. Here, we performed phenotypic and functional characterization of peripheral blood immune cells from pediatric and adult-onset AITD patients and age-matched controls using mass cytometry.

View Article and Find Full Text PDF

Over the years, various techniques have been utilized to study the function and phenotype of antigen-binding B cells in the primary repertoire following immunization, infection, and development of autoimmunity. Due to the low frequency of antigen-reactive B cells (<0.05% of lymphocytes) in the periphery, preliminary enrichment of cells is necessary to achieve sufficient numbers for statistically sound characterization, especially when downstream analytic platform use, e.

View Article and Find Full Text PDF

Background: Data suggest that there were disparities in H1N1 vaccine uptake, and these may inform COVID-19 vaccination efforts. We conducted a systematic review to evaluate disparities in H1N1 vaccine uptake, factors contributing to disparities, and interventions to reduce them.

Methods: We searched English-language articles in MEDLINE ALL, PsycINFO, Cochrane Database of Systematic Reviews, and Cochrane Central Register of Controlled Trials from database inception through May 8, 2020.

View Article and Find Full Text PDF

B lymphocytes play critical roles in the development of autoimmunity, acting as autoantibody manufacturers, antigen-presenting cells, and producers of cytokines. Pan-B cell depletion has demonstrated efficacy in treatment of many autoimmune disorders, but carries with it an unfavorable safety profile due to global immune suppression. Hence, attention has turned to the potential of autoantigen-specific B cell targeted therapies, which would deplete or silence pathogenic self-antigen-reactive cells while sparing B cells needed for immune defense.

View Article and Find Full Text PDF

Background: The majority of adolescents with type 1 diabetes (T1D) integrate social media engagement into their daily lives. The aim of this study was to explore adolescents' experiences and perspectives discussing their T1D on social media.

Methods: Semi-structured interviews with adolescents with T1D were conducted in person and via telephone.

View Article and Find Full Text PDF

Purpose Of Review: Although type 1 diabetes (T1D) is characterized by destruction of the pancreatic beta cells by self-reactive T cells, it has become increasingly evident that B cells also play a major role in disease development, likely functioning as antigen-presenting cells. Here we review the biology of islet antigen-reactive B cells and their participation in autoimmune diabetes.

Recent Findings: Relative to late onset, individuals who develop T1D at an early age display increased accumulation of insulin-reactive B cells in islets.

View Article and Find Full Text PDF
Article Synopsis
  • A significant percentage (2.5%-30%) of human peripheral CD27- B cells are autoreactive and anergic, meaning they do not respond to stimuli due to unknown mechanisms.
  • The study identifies elevated levels of PTEN, an enzyme that regulates cell signaling, as a key factor maintaining this anergy, with its expression being linked to decreased microRNA levels.
  • In individuals with autoimmune diseases, such as type 1 diabetes, PTEN levels were lower, indicating a potential risk factor for autoimmunity, whereas healthy individuals had higher PTEN levels that decreased with increased IgM, suggesting a balance between autoreactivity and immune response readiness.
View Article and Find Full Text PDF

Aims/hypothesis: Previous studies have demonstrated that high-affinity insulin-binding B cells (IBCs) silenced by anergy in healthy humans lose their anergy in islet autoantibody-positive individuals with recent-onset type 1 diabetes, and in autoantibody-negative first-degree relatives carrying certain risk alleles. Here we explore the hypothesis that IBCs are found in the immune periphery of disease-resistant C57BL/6-H2g7 mice, where, as in healthy humans, they are anergic, but that in disease-prone genetic backgrounds (NOD) they become activated and migrate to the pancreas and pancreatic lymph nodes, where they participate in the development of type 1 diabetes.

Methods: We compared the status of high-affinity IBCs in disease-resistant VH125.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) exert immune modulatory properties and previous studies demonstrated suppressive effects of MSC treatment in animal models of allergic airway inflammation. However, the underlying mechanisms have not been fully elucidated. We studied the role of MSC in immune activation and subsequent recruitment of monocytes in suppressing airway hyperresponsiveness and airway inflammation using a mouse model of allergic airway inflammation.

View Article and Find Full Text PDF

Although B cells reactive with islet autoantigens are silenced by tolerance mechanisms in healthy individuals, they can become activated and contribute to the development of type 1 diabetes. We previously demonstrated that high-affinity insulin-binding B cells (IBCs) occur exclusively in the anergic (B) compartment in peripheral blood of healthy subjects. Consistent with their activation early in disease development, high-affinity IBCs are absent from the B compartment of some first-degree relatives (FDRs) as well as all patients with autoantibody-positive prediabetes and new-onset type 1 diabetes, a time when they are found in pancreatic islets.

View Article and Find Full Text PDF

Autoimmune thyroid disease (AITD), including Hashimoto's thyroiditis (HT) and Graves' disease (GD), is the most common autoimmune disorder in the United States, affecting over 20 million people. At the time of diagnosis, both HD and GD are characterized by the accumulation of B and T lymphocytes in the thyroid gland and production of autoantibodies targeting the thyroid, indicating that a breach in tolerance of autoreactive lymphocytes has occurred. However, few studies have sought to understand the underlying pathogenesis of AITD that ultimately leads to production of autoantibodies and loss of thyroid function.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that affects an estimated 30 million people worldwide. It is characterized by the destruction of pancreatic β cells by the immune system, which leads to lifelong dependency on exogenous insulin and imposes an enormous burden on patients and health-care resources. T1DM is also associated with an increased risk of comorbidities, such as cardiovascular disease, retinopathy, and diabetic kidney disease (DKD), further contributing to the burden of this disease.

View Article and Find Full Text PDF

B cells reactive with a specific antigen usually occur at a frequency of <0.05% of lymphocytes. For decades researchers have sought methods to isolate and enrich these rare cells for studies of their phenotype and biology.

View Article and Find Full Text PDF

The adaptive immune repertoire plays a critical role in type 1 diabetes (T1D) pathogenesis. However, efforts to characterize B cell and T cell receptor (TCR) profiles in T1D subjects have been largely limited to peripheral blood sampling and restricted to known antigens. To address this, we collected pancreatic draining lymph nodes (pLN), "irrelevant" nonpancreatic draining lymph nodes, peripheral blood mononuclear cells (PBMC), and splenocytes from T1D subjects ( = 18) and control donors ( = 9) as well as pancreatic islets from 1 T1D patient; from these tissues, we collected purified CD4 conventional T cells (Tconv), CD4 Treg, CD8 T cells, and B cells.

View Article and Find Full Text PDF

B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear.

View Article and Find Full Text PDF