Publications by authors named "Mia Rosenfeld"

Mucins, the biomolecular components of mucus, are glycoproteins that form a thick physical barrier at all tissue-air interfaces, forming a first line of defense against pathogens. Structural features of mucins and their interactions with other biomolecules remain largely unexplored due to the challenges associated with their high-resolution characterization. Combining limited mass spectrometry glycomics and protein sequencing data, we present all-atom, explicitly solvated molecular dynamics simulations of a major respiratory mucin, MUC5B.

View Article and Find Full Text PDF

The full-length prefusion-stabilized SARS-CoV-2 spike (S) is the principal antigen of COVID-19 vaccines. Vaccine efficacy has been impacted by emerging variants of concern that accumulate most of the sequence modifications in the immunodominant S1 subunit. S2, in contrast, is the most evolutionarily conserved region of the spike and can elicit broadly neutralizing and protective antibodies.

View Article and Find Full Text PDF

Mucin-domain glycoproteins are densely O-glycosylated and play critical roles in a host of biological functions. In particular, the T cell immunoglobulin and mucin-domain containing family of proteins (TIM-1, -3, -4) decorate immune cells and act as key regulators in cellular immunity. However, their dense O-glycosylation remains enigmatic, primarily due to the challenges associated with studying mucin domains.

View Article and Find Full Text PDF

Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx.

View Article and Find Full Text PDF
Article Synopsis
  • Mucin-domain glycoproteins are heavily O-glycosylated and are important for various biological functions, particularly as checkpoint inhibitors in cancer through the TIM protein family.
  • A new mucinase, SmE, can specifically cleave complex mucin glycoproteins, enabling better analysis of their structures using mass spectrometry.
  • Molecular dynamics simulations of TIM-3 and TIM-4 illustrate how O-glycosylation impacts their structural properties, providing a comprehensive approach to studying the mucinome.
View Article and Find Full Text PDF

We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus obscure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes.

View Article and Find Full Text PDF

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity.

View Article and Find Full Text PDF

Recent biochemical, biophysical, and genetic studies have shown that heparan sulfate, a major component of the cellular glycocalyx, participates in infection of SARS-CoV-2 by facilitating the so-called open conformation of the spike protein, which is required for binding to ACE2. This review highlights the involvement of heparan sulfate in the SARS-CoV-2 infection cycle and argues that there is a high degree of coordination between host cell heparan sulfate and asparagine-linked glycans on the spike in enabling ACE2 binding and subsequent infection. The discovery that spike protein binding and infection depends on both viral and host glycans provides insights into the evolution, spread and potential therapies for SARS-CoV-2 and its variants.

View Article and Find Full Text PDF

Prevention of infection and propagation of SARS-CoV-2 is of high priority in the COVID-19 pandemic. Here, we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 Spike protein, thereby inhibiting viral entry, infectivity, and cytotoxicity.

View Article and Find Full Text PDF

Inspired by the role of cell-surface glycoproteins as coreceptors for pathogens, we report the development of : a glycopolymer-based lateral flow assay for detecting SARS-CoV-2 and its variants. utilizes glycopolymers for primary capture and antispike antibodies labeled with gold nanoparticles for signal-generating detection. A lock-step integration between experiment and computation has enabled efficient optimization of test strips which can selectively, sensitively, and rapidly detect SARS-CoV-2 and its variants in biofluids.

View Article and Find Full Text PDF

Unlabelled: We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes.

View Article and Find Full Text PDF

The tumor suppressor p53 plays a vital role in responding to cell stressors such as DNA damage, hypoxia, and tumor formation by inducing cell-cycle arrest, senescence, or apoptosis. Expression level alterations and mutational frequency implicates p53 in most human cancers. In this review, we show how both computational and experimental methods have been used to provide an integrated view of p53 dynamics, function, and reactivation potential.

View Article and Find Full Text PDF

A total of 190 individuals participated in a clinical visit during the Cooperative Studies Program (CSP) 418-A Long Term Follow-Up Study. Of this cohort, 158 participants were considered current hearing aid users, and 32 were non-hearing aid users. Of the current hearing aid users, 81 were still using their original 418 study devices, and 77 had acquired new hearing aids.

View Article and Find Full Text PDF

This report provides background regarding the Long Term Follow-Up of Patients in the NIDCD/VA Hearing Aid Clinical Trial study and serves as an introduction to the detailed reports that follow in this issue of Journal of the American Academy of Audiology. The authors investigated five- to seven-year benefit/satisfaction in participants from the original NIDCDNA Hearing Aid Clinical Trial. The new study was designed to investigate current use of the original study hearing aids, to compare changes in selected audiological measures, and to assess possible predictors of long-term hearing aid use.

View Article and Find Full Text PDF

Objective: Because the NIDCD/VA Hearing Aid Clinical Trial was conducted across eight clinical sites, rigorous control of the electroacoustic characteristics of the experimental devices was required.

Design: The parameters monitored included the gain and output of the approximately 720 hearing aids in the trial, measured both in the 2 cm3 coupler and in situ. Each measurement was repeated six times on each hearing aid across the 9-mo duration of the study to insure both the stability and the accuracy of the circuits under investigation.

View Article and Find Full Text PDF