Publications by authors named "Mia Magnusson"

Epigenetics, including DNA methylation, is one way for a cell to respond to the surrounding environment. Traditionally, DNA methylation has been perceived as a quite stable modification; however, lately, there have been reports of a more dynamic CpG methylation that can be affected by, for example, long-term culturing. We recently reported that methylation in the enhancer of the gene encoding the key fibrinolytic enzyme tissue-type plasminogen activator (t-PA) was rapidly erased during cell culturing.

View Article and Find Full Text PDF

Objective. Endothelial tissue-type plasminogen activator (t-PA) release is a pivotal response to protect the circulation from occluding thrombosis. We have shown that the t-PA gene is epigenetically regulated and greatly induced by the histone deacetylase (HDAC) inhibitor valproic acid (VPA).

View Article and Find Full Text PDF

Tissue-type plasminogen activator (t-PA), which is synthesized in the endothelial cells lining the blood vessel walls, is a key player in the fibrinolytic system protecting the circulation against occluding thrombus formation. Although classical gene regulation has been quite extensively studied in order to understand the mechanisms behind t-PA regulation, epigenetics, including DNA methylation, still is a largely unexplored field. The aim of this study was to establish the methylation pattern in the t-PA promoter and enhancer in non-cultured compared to cultured human umbilical vein endothelial cells (HUVECs), and to simultaneously examine the level of t-PA gene expression.

View Article and Find Full Text PDF

A reduced capacity for acute tissue-type plasminogen activator (t-PA) release is likely to be associated with an impaired endogenous defense against intravascular thrombosis. Efficient approaches to pharmacologically restore a defective t-PA release have been lacking, but recent observations suggest that histone deacetylase inhibitors (HDACis) enhance t-PA production in vitro. HDACis have diverse chemical structures and different HDAC-enzyme sub-class targeting.

View Article and Find Full Text PDF

Aims: Stimulated release of tissue-type plasminogen activator (t-PA) is pivotal for an intravascular fibrinolytic response and protects the circulation from occluding thrombosis. Hence, an impaired t-PA production is associated with increased risk for atherothrombotic events. A pharmacological means to stimulate the production of this enzyme may thus be desirable.

View Article and Find Full Text PDF

Therapeutic hypothermia has been found to improve hemodynamic and metabolic parameters in cardiogenic shock. Tissue plasminogen activator (t-PA) is a pro-thrombolytic enzyme, which also possesses pro-inflammatory properties. Interleukin 6 (IL-6) and tumour necrosis factor alpha (TNF-α) are pro-inflammatory cytokines; interleukin 10 (IL-10) and transforming growth factor beta 1 (TGF-β1) are anti-inflammatory cytokines.

View Article and Find Full Text PDF