Scientists must have an integrative understanding of ecology and evolution across spatial and temporal scales to predict how species will respond to global change. Although comprehensively investigating these processes in nature is challenging, the infrastructure and data from long-term ecological research networks can support cross-disciplinary investigations. We propose using these networks to advance our understanding of fundamental evolutionary processes and responses to global change.
View Article and Find Full Text PDFSoil fungi can differentially affect plant performance and community dynamics. While fungi play key roles in driving the plant-soil feedbacks (PSFs) that promote grassland succession, it remains unclear how the fungi-mediated PSFs affect tree species establishment during forest succession. We inoculated pioneer broadleaf (Betula platyphylla and Betula albosinensis) and nonpioneer coniferous tree seedlings (Picea asperata and Abies faxoniana) with fungal-dominated rooting zone soils collected from dominant plant species of early-, mid- and late-successional stages in a subalpine forest, and compared their biomass and fungal communities.
View Article and Find Full Text PDFThe perception of airborne chemical signals by plants can trigger reconfigurations of their metabolism that alter their biotic interactions. While plant-to-plant chemical communication has primarily been studied in the context of eliciting defenses to herbivores and pathogens, recent work suggests that it can also affect plants’ interactions with their rhizosphere microbiomes. In this perspective, we discuss the potential for integrating the fields of plant-to-plant communication and microbial ecology to understand the chemical ecology of plant−microbiome interactions.
View Article and Find Full Text PDFPremise: The importance of chloroplast movement for plant growth in constant, controlled light and of nonphotochemical quenching (NPQ) in variable, natural light are known. Here we concurrently investigated growth and reproduction of several Arabidopsis thaliana mutants to assess the relative importance of photoprotection via chloroplast movement and NPQ.
Methods: Plants were grown outdoors (natural conditions) or in a growth chamber with variable light and chilling temperatures (controlled conditions).
Communities of microorganisms in the soil can affect plants' growth and interactions with aboveground herbivores. Thus, there is growing interest in utilizing soil microbiomes to improve plant performance in agriculture (, for pest control), but little is known about the phenotypic responses of various crop species to different microbiomes. In this study, we inoculated four crop species from different botanical families, maize (, Poaceae), cucumber (, Cucurbitaceae), tomato (, Solanaceae), and lettuce (, Asteraceae), with diverse soil microbiomes originating from actively-managed agricultural fields or fallow fields under varying stages of succession (1, 3, and 16-years post-agriculture) sourced from a large-scale field experiment.
View Article and Find Full Text PDFPremise: While essential for photosynthesis, excess light can damage plants. We investigated how growth light conditions affect two photoprotective strategies, chloroplast movement and nonphotochemical quenching (NPQ), as well as electron transport rates (ETR), and the relative importance of these processes in the short-term stress tolerance of Arabidopsis thaliana.
Methods: We grew wild-type (WT) and mutant plants with impaired chloroplast movement (phot1, phot2, phot1 phot2, chup1) or NPQ (npq1) at low (160 μmol photons m s ) or intermediate light (400 μmol photons m s ) before quantifying transmission changes due to chloroplast movement, NPQ, ETR, and the ability to recover from a short-term high-light treatment.
The quality and outcome of organismal interactions are not only a function of genotypic composition of the interacting species, but also the surrounding environment. Both the strength and direction of natural selection on interacting populations vary with the community context, which itself is changed by these interactions. Here, we test for the role of interacting evolutionary and ecological processes in plant-herbivore interactions during early community succession in the tall goldenrod, Solidago altissima.
View Article and Find Full Text PDFWe show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region.
View Article and Find Full Text PDF