Publications by authors named "Mia Kelly"

Plasticity is a fundamental property of the neural system controlling breathing. One key example of respiratory motor plasticity is phrenic long-term facilitation (pLTF), a persistent increase in phrenic nerve activity elicited by acute intermittent hypoxia (AIH). pLTF can arise from distinct cell signaling cascades initiated by serotonin versus adenosine receptor activation, respectively, and interact via powerful cross-talk inhibition.

View Article and Find Full Text PDF

Intermittent hypoxia, or intermittent low oxygen interspersed with normal oxygen levels, has differential effects that depend on the "dose" of hypoxic episodes (duration, severity, number per day, and number of days). Whereas "low dose" daily acute intermittent hypoxia (dAIH) elicits neuroprotection and neuroplasticity, "high dose" chronic intermittent hypoxia (CIH) similar to that experienced during sleep apnea elicits neuropathology. Sleep apnea is comorbid in >50% of patients with Alzheimer's disease-a progressive, neurodegenerative disease associated with brain amyloid and chronic Tau dysregulation (pathology).

View Article and Find Full Text PDF

Over half of all spinal cord injuries (SCIs) are cervical, which can lead to paralysis and respiratory compromise, causing significant morbidity and mortality. Effective treatments to restore breathing after severe upper cervical injury are lacking; thus, it is imperative to develop therapies to address this. Epidural stimulation has successfully restored motor function after SCI for stepping, standing, reaching, grasping, and postural control.

View Article and Find Full Text PDF

Circadian rhythms are endogenous and entrainable daily patterns of physiology and behavior. Molecular mechanisms underlie circadian rhythms, characterized by an ~24-h pattern of gene expression of core clock genes. Although it has long been known that breathing exhibits circadian rhythms, little is known concerning clock gene expression in any element of the neuromuscular system controlling breathing.

View Article and Find Full Text PDF

Visual features associated with a task and those that predict noxious events both prompt selectively heightened visuocortical responses. Conflicting views exist regarding how the competition between a task-related and a threat-related feature is resolved when they co-occur in time and space. Utilizing aversive classical Pavlovian conditioning, we investigated the visuocortical representation of two simultaneously presented, fully overlapping visual stimuli.

View Article and Find Full Text PDF

In SOD1 transgenic rat model of ALS, breathing capacity is preserved until late in disease progression despite profound respiratory motor neuron (MN) cell death. To explore mechanisms preserving breathing capacity, we assessed inspiratory EMG activity in diaphragm and external intercostal T2 (EIC2) and T5 (EIC5) muscles in anesthetized SOD1 rats at disease end-stage (20% decrease in body mass). We hypothesized that despite significant phrenic motor neuron loss and decreased phrenic nerve activity, diaphragm electrical activity and trans-diaphragmatic pressure (Pdi) are maintained to sustain ventilation.

View Article and Find Full Text PDF