Large-scale genetic interaction (GI) screens in yeast have been invaluable for our understanding of molecular systems biology and for characterizing novel gene function. Owing in part to the high costs and long experiment times required, a preponderance of GI data has been generated in a single environmental condition. However, an unknown fraction of GIs may be specific to other conditions.
View Article and Find Full Text PDFSystematic screens for genetic interactions are a cornerstone of both network and systems biology. However, most screens have been limited to characterizing interaction networks in a single environment. Moving beyond this static view of the cell requires a major technological advance to increase the throughput and ease of replication in these assays.
View Article and Find Full Text PDFEndogenous intestinal microbiota have wide-ranging and largely uncharacterized effects on host physiology. Here, we used reverse-phase liquid chromatography-coupled tandem mass spectrometry to define the mouse intestinal proteome in the stomach, jejunum, ileum, cecum and proximal colon under three colonization states: germ-free (GF), monocolonized with Bacteroides thetaiotaomicron and conventionally raised (CR). Our analysis revealed distinct proteomic abundance profiles along the gastrointestinal (GI) tract.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2015
Objective: Prenatal deletion of the type II transforming growth factor-β (TGF-β) receptor (TBRII) prevents normal vascular morphogenesis and smooth muscle cell (SMC) differentiation, causing embryonic death. The role of TBRII in adult SMC is less well studied. Clarification of this role has important clinical implications because TBRII deletion should ablate TGF-β signaling, and blockade of TGF-β signaling is envisioned as a treatment for human aortopathies.
View Article and Find Full Text PDFObjective: Transforming growth factor-β (TGF-β) signaling is required for normal vascular development. We aimed to discover the role of TGF-β signaling in embryonic smooth muscle cells (SMCs).
Methods And Results: We bred mice with smooth muscle (SM) 22α-Cre and Tgfbr2(flox) alleles to generate embryos in which the type II TGF-β receptor (TGFBR2; required for TGF-β signaling) was deleted in SMCs.
Background: The mechanisms of atherosclerotic plaque rupture are poorly understood. Urokinase-type plasminogen activator (uPA) is expressed at elevated levels by macrophages in advanced human plaques. Patients with evidence of increased plasminogen activation have an elevated risk of major cardiovascular events.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2009
Objective: Impairment of transforming growth factor (TGF)-beta1 signaling accelerates atherosclerosis in experimental mice. However, it is uncertain whether increased TGF-beta1 expression would retard atherosclerosis. The role of TGF-beta1 in aneurysm formation is also controversial.
View Article and Find Full Text PDF