Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.
View Article and Find Full Text PDFAssessing the relative contributions of different pollinator taxa to pollination services is a central task in both basic eco-evolutionary research and applied conservation and agriculture. To that end, many studies have quantified single-visit pollen deposition and visitation frequency, which together determine a pollinator species' rate of conspecific pollen delivery. However, for plant species that require or benefit from outcrossing, pollination service quality further depends upon the ratio of outcross to self-pollen deposited, which is determined by two additional pollinator traits: pollen carryover and movement patterns among genetically compatible plant individuals.
View Article and Find Full Text PDFMegachile rotundata (F.) is an important pollinator of alfalfa in the United States. Enhancing landscapes with wildflowers is a primary strategy for conserving pollinators and may improve the sustainability of M.
View Article and Find Full Text PDFAgricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts.
View Article and Find Full Text PDFThere is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species.
View Article and Find Full Text PDFWild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented.
View Article and Find Full Text PDFClimate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species-specific phenological shifts and maintain synchrony at the community level, as predicted by the biodiversity insurance hypothesis. Here, we explore how biodiversity might enhance and stabilise phenological synchrony between a valuable crop, apple and its native pollinators.
View Article and Find Full Text PDFBiological invasions change native plant communities, but theory predicting whether introductions create naturalized or invasive species is lacking. Focusing on either plant traits or interactions of introduced plants with native biota creates unreliable results, and improvements may require integration of trait- and interaction-based approaches. To assess the importance of plant traits and herbivory on invasiveness, we incorporated herbivore effects in comparisons of growth and phenology of invasive Phragmites australis and its native congener P.
View Article and Find Full Text PDF