Publications by authors named "MiJi Yeo"

Article Synopsis
  • - HITS-Bio is a new bioprinting system that allows for the rapid and efficient placement of multiple cell spheroids, achieving speeds ten times faster than current methods while maintaining high cell viability (>90%).
  • - It demonstrates significant applications, such as using microRNA-modified stem cell spheroids for nearly complete bone defect closure in rats after 3 to 6 weeks, showcasing its potential in regenerative medicine.
  • - The system also effectively fabricates large cartilage constructs with around 600 chondrogenic spheroids in under 40 minutes, emphasizing its scalability and efficiency for medical repairs.
View Article and Find Full Text PDF

The demand for meat and seafood products has been globally increasing for decades. To address the environmental, social, and economic impacts of this trend, there has been a surge in the development of three-dimensional (3D) food bioprinting technologies for lab-grown muscle food products and their analogues. This innovative approach is a sustainable solution to mitigate the environmental risks associated with climate change caused by the negative impacts of indiscriminative livestock production and industrial aquaculture.

View Article and Find Full Text PDF

Tissue biofabrication that replicates an organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids has the potential to create constructs with native cell densities, but its application is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a novel multiarray spheroid bioprinting technology enabling scalable tissue fabrication by rapidly positioning a number of spheroids simultaneously using a digitally-controlled nozzle array (DCNA) platform.

View Article and Find Full Text PDF

Craniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure.

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function.

View Article and Find Full Text PDF

Craniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure.

View Article and Find Full Text PDF

Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium.

View Article and Find Full Text PDF

Human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models. However, the manual approach is slow, low-throughput and has limitations in terms of achieving the intricate 3D structure of the natural nasal epithelium in a uniform manner.

View Article and Find Full Text PDF

The esophagus exhibits peristalsis via contraction of circularly and longitudinally aligned smooth muscles, and esophageal replacement is required if there is a critical-sized wound. In this study, we proposed to reconstruct esophageal tissues using cell electrospinning (CE), an advanced technique for encapsulating living cells into fibers that allows control of the direction of fiber deposition. After treatment with transforming growth factor-β, mesenchymal stem cell-derived smooth muscle cells (SMCs) were utilized for cell electrospinning or three-dimensional bioprinting to compare the effects of aligned micropatterns on cell morphology.

View Article and Find Full Text PDF

Biofabricated tissues have found numerous applications in tissue engineering and regenerative medicine in addition to the promotion of disease modeling and drug development and screening. Although three-dimensional (3D) printing strategies for designing and developing customized tissue constructs have made significant progress, the complexity of innate multicellular tissues hinders the accurate evaluation of physiological responses in vitro. Cellular aggregates, such as spheroids, are 3D structures where multiple types of cells are co-cultured and organized with endogenously secreted extracellular matrix and are designed to recapitulate the key features of native tissues more realistically.

View Article and Find Full Text PDF

Gene therapeutic applications combined with bio- and nano-materials have been used to address current shortcomings in bone tissue engineering due to their feasibility, safety and potential capability for clinical translation. Delivery of non-viral vectors can be altered using gene-activated matrices to improve their efficacy to repair bone defects.anddelivery strategies are the most used methods for bone therapy, which have never been directly compared for their potency to repair critical-sized bone defects.

View Article and Find Full Text PDF

The engineering of osteochondral interfaces remains a challenge. MicroRNAs (miRs) have emerged as significant tools to regulate the differentiation and proliferation of osteogenic and chondrogenic formation in the human musculoskeletal system. Here, we describe a novel approach to osteochondral reconstruction based on the three-dimensional (3D) bioprinting of miR-transfected adipose-derived stem cell (ADSC) spheroids to produce a heterotypic interface that addresses the intrinsic limitations of the traditional approach to inducing zonal differentiation via the use of diffusible cytokines.

View Article and Find Full Text PDF

In this study, a fully aligned microfibrous structure fabricated using fibrin-assisted alginate bioink and electrohydrodynamic direct-printing was proposed for skeletal muscle tissue engineering. To safely construct the aligned alginate/fibrin microfibrous structure laden with myoblasts or endothelial cells, various printing conditions, such as an applied electric field, distance between the nozzle and target, and nozzle moving speed, were selected appropriately. Furthermore, to accelerate the formation of myotubes more efficiently, the alginate/fibrin bioink with vascular endothelial cells was co-printed into a spatially patterned structure within a myoblast-laden structure.

View Article and Find Full Text PDF

A spheroid is an aggregation of single cells with structural and functional characteristics similar to those of 3D native tissues, and it has been utilized as one of the typical three-dimensional (3D) cell models. Scaffold-free spheroids provide outstanding reflection of tissue complexity in a 3D -like environment, but they can neither fabricate realistic macroscale 3D complex structures without avoiding necrosis nor receive direct external stimuli (i.e.

View Article and Find Full Text PDF

Human skeletal muscle is composed of intricate anatomical structures, including uniaxially arranged myotubes and widely distributed blood capillaries. In this regard, vascularization is an essential part of the successful development of an engineered skeletal muscle tissue to restore its function and physiological activities. In this paper, we propose a method to obtain a platform for co-culturing human umbilical vein endothelial cells (HUVECs) and C2C12 cells using cell electrospinning and 3D bioprinting.

View Article and Find Full Text PDF

Electrospinning has gained great interest in the field of regenerative medicine, due to its fabrication of a native extracellular matrix-mimicking environment. The micro/nanofibers generated through this process provide cell-friendly surroundings which promote cellular activities. Despite these benefits of electrospinning, a process was introduced to overcome the limitations of electrospinning.

View Article and Find Full Text PDF

For regenerating skeletal muscle tissue, cell alignment and myotube formation in a scaffold are required. To achieve this goal, various studies have focused on controlling the myoblast orientation by manipulating the topographical structures of scaffolds. In the present study, a combined process involving electrospinning and three-dimensional (3D) printing was used to obtain a hierarchical structure consisting of microscale and nanoscale topographical structures by using alginate nanofibers and a polycaprolactone (PCL)-fibrillated micro-strut.

View Article and Find Full Text PDF

The development of the three-dimensional (3D) printer has resulted in significant advances in a number of fields, including rapid prototyping and biomedical devices. For 3D structures, the inclusion of dynamic responses to stimuli is added to develop the concept of four-dimensional (4D) printing. Typically, 4D printing is useful for biofabrication by reproducing a stimulus-responsive dynamic environment corresponding to physiological activities.

View Article and Find Full Text PDF

For muscle regeneration, a uniaxially arranged micropattern is important to mimic the structure of the natural extracellular matrix. Recently, cell electrospinning (CE) has been tested to fabricate cell-laden fibrous structures by embedding cells directly into micro/nanofibers. Although homogenous cell distribution and a reasonable cell viability of the cell-laden fibrous structure fabricated using the CE process are achieved, unique topographical cues formed by an aligned fibrous structure have not been applied.

View Article and Find Full Text PDF

Cellulose has been widely used as micro/nanofibers in various applications of tissue regeneration, but has certain limitations for bone regeneration, , low biocompatibility in inducing osteogenesis. In addition, the low processability from the decomposition property before melting can be a significant obstacle to fabricating a required complex structure through a 3D-printing process. Herein, to overcome the low osteogenic activity of pure cellulose, we suggest a new cellulose-based composite scaffold consisting of cellulose and a high weight fraction (70 wt%) of calcium-deficient-hydroxyapatite (CDHA), which was obtained from the hydrolysis of α-tricalcium phosphate.

View Article and Find Full Text PDF

In tissue engineering, biomimetic scaffolds are developed to provide cells with a microenvironment that promotes cellular activities. In this study, we present a three-dimensional (3D) fibrous bundle structure fabricated using an electrohydrodynamic process and a cell printing process using myoblast-laden collagen bioink. An anisotropic topographical cue in a 3D structure is an important factor for muscle tissue regeneration, and therefore, the fibrous bundle structure was uniaxially stretched using optimized conditions for fiber alignment.

View Article and Find Full Text PDF

Cell-printing is an emerging technique that enables to build a customized structure using biomaterials and living cells for various biomedical applications. In many biomaterials, alginate has been widely used for rapid gelation, low cost, and relatively high processability. However, biocompatibilities enhancing cell adhesion and proliferation were limited, so that, to overcome this problem, an outstanding alternative, collagen, has been extensively investigated.

View Article and Find Full Text PDF

In this study, we suggest a new biocomposite scaffold composed of gelatin/α-TCP (tricalcium phosphate)/SF (silk-fibroin) (GTS) which has enhanced mechanical strength and high level of cellular activity. To fabricate GTS scaffold, a temperature-controlled 3D printing process was used and appropriate printing conditions were selected based on rheological data. To show the feasibility as a biomedical scaffold for bone tissue regeneration, the various physical and biological results, using MG63 (osteoblast-like cells), of the GTS scaffold were compared with those of a pure gelatin (G) and gelatin/α-TCP (GT) composite scaffold.

View Article and Find Full Text PDF

Three-dimensional (3D) printing in tissue engineering has been studied for the bio mimicry of the structures of human tissues and organs. Now, it is being applied to 3D cell printing, which can position cells and biomaterials, such as growth factors, at desired positions in the 3D space. However, there are some challenges of 3D cell printing, such as cell damage during the printing process and the inability to produce a porous 3D shape owing to the embedding of cells in the hydrogel-based printing ink, which should be biocompatible, biodegradable, and non-toxic, etc.

View Article and Find Full Text PDF

Biomedical scaffolds must be used in tissue engineering to provide physical stability and topological/biochemical properties that directly affect tissue regeneration. In this study, a new cell-laden scaffold was developed that supplies micro/nano-topological cues and promotes efficient release of cells. The hierarchical structure consisted of poly(ε-caprolactone) macrosized struts for sustaining a three-dimensional structural shape, aligned nanofibers obtained with optimized electrospinning, and cell-printed myoblasts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionie61rrrjkgaj6d88uck7led03nr5ofis): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once