Colloids Surf B Biointerfaces
February 2017
Nanomaterials have been widely utilized in the food industry in production, packaging, sensors, nutrient delivery systems, and food additives. However, research on the interactions between food-grade nanoparticles and biomolecules as well as their potential toxicity is limited. In the present study, the in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of one of the most extensively used food additives, silica (SiO) were evaluated with respect to particle size (nano vs bulk) following single-dose oral administration to rats.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
June 2016
Inorganic nanoparticles have been widely applied to various industrial fields and biological applications. However, the question as to whether nanoparticles are more efficiently absorbed into the systemic circulation than bulk-sized materials remains to be unclear. In the present study, the physico-chemical and dissolution properties of the most extensively developed inorganic nanoparticles, such as silica (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO), were analyzed, as compared with bulk-sized particles.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2016
Titanium dioxide (TiO₂) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO₂ NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO₂ NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2015
Calcium is the most abundant mineral in human body and essential for the formation and maintenance of bones and teeth as well as diverse cellular functions. Calcium carbonate (CaCO₃) is widely used as a dietary supplement; however, oral absorption efficiency of CaCO₃ is extremely low, which may be overcome by applying nano-sized materials. In this study, we evaluated the efficacy of food grade nano CaCO₃ in comparison with that of bulk- or reagent grade nano CaCO₃ in terms of cytotoxicity, cellular uptake, intestinal transport, and oral absorption.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2015
The microbiological production of 2,3-butanediol (2,3-BDO) has attracted considerable attention as an alternative way to produce high-value chemicals from renewable sources. Among the number of 2,3-BDO-producing microorganisms, Klebsiella pneumoniae has been studied most extensively and is known to produce large quantity of 2,3-BDO from a range of substrates. On the other hand, the pathogenic characteristics of the bacteria have limited its industrial applications.
View Article and Find Full Text PDFGold nanoparticles (Au-NPs) have promising potential for diverse biological application, but it has not been completely determined whether Au-NP has potential toxicity and . In the present study, toxicity of Au-NP was evaluated in human intestinal cells as well as in rats after 14-day repeated oral administration. Biokinetic study was also performed to assess oral absorption and tissue distribution.
View Article and Find Full Text PDF