Proc Natl Acad Sci U S A
October 2024
Global pollution has exacerbated accumulation of toxicants like methylmercury (MeHg) in seafood. Human exposure to MeHg has been associated with long-term neurodevelopmental delays and impaired cardiovascular health, while many micronutrients in seafood are beneficial to health. The largest MeHg exposure source for many general populations originates from marine fish that are harvested from the global ocean and sold in the commercial seafood market.
View Article and Find Full Text PDFWhile mercury occurs naturally in the environment, human activity has significantly disturbed its biogeochemical cycle. Inorganic mercury entering aquatic systems can be transformed into methylmercury, a strong neurotoxicant that builds up in organisms and affects ecosystem and public health. In the Arctic, top predators such as beluga whales, an ecologically and culturally significant species for many Inuit communities, can contain high concentrations of methylmercury.
View Article and Find Full Text PDFMercury (Hg) biomonitoring requires a precise understanding of the internal processes contributing to disparities between the Hg sources in the environment and the Hg measured in the biota. In this study, we investigated the use of Hg stable isotopes to trace Hg accumulation in Adélie and emperor penguin chicks from four breeding colonies in Antarctica. Interspecific variation of ΔHg in penguin chicks reflects the distinct foraging habitats and Hg exposures in adults.
View Article and Find Full Text PDFHigh levels of methylmercury (MeHg) have been reported in Arctic marine biota, posing health risks to wildlife and human beings. Although MeHg concentrations of some Arctic species have been monitored for decades, the key environmental and ecological factors driving temporal trends of MeHg are largely unclear. We develop an ecosystem-based MeHg bioaccumulation model for the Beaufort Sea shelf (BSS) using the Ecotracer module of Ecopath with Ecosim, and apply the model to explore how MeHg toxicokinetics and food web trophodynamics affect bioaccumulation in the BSS food web.
View Article and Find Full Text PDFMonitoring mercury (Hg) levels in biota is considered an important objective for the effectiveness evaluation of the Minamata Convention. While many studies have characterized Hg levels in organisms at multiple spatiotemporal scales, concentration analyses alone often cannot provide sufficient information on the Hg exposure sources and internal processes occurring within biota. Here, we review the decadal scientific progress of using Hg isotopes to understand internal processes that modify the speciation, transport, and fate of Hg within biota.
View Article and Find Full Text PDFNearshore systems play an important role as mercury (Hg) sources to the open ocean and to human health via fish consumption. The nearshore system along East Asia is of particular concern given the rapid industrialization, which contributes to significant anthropogenic Hg emissions and releases. We used Hg stable isotopes to characterize Hg sources in the sediment and fish along the west coast of Korea, located at the northeast of the East China Sea.
View Article and Find Full Text PDFSelenium (Se), which can be both hazardous and beneficial to plants, animals and humans, plays a pivotal role in regulating soil-plant-human ecosystem functions. The biogeochemical behavior of Se and its environmental impact on the soil-plant-human system has received broad attention in the last decades. This review provides a comprehensive understanding of Se biogeochemistry in the soil-plant-human system.
View Article and Find Full Text PDF