Although curcumin has been well known as a phytochemical drug that inhibits tumor promotion by modulating multiple molecular targets, its potential was not reported as a targeting ligand in the field of drug delivery system. Here, we aimed to assess the tumor-targeting efficiency of curcumin and its derivatives such as phenylalanine, cinnamic acid, coumaric acid, and ferulic acid. Curcumin exhibited a high affinity for estrogen receptors through a pull-down assay using the membrane proteins of MCF-7, a breast cancer cell line, followed by designation of a polymer-based gene therapy system.
View Article and Find Full Text PDFAmphotericin B (AmB) is an antifungal agent administered for the management of serious systemic fungal infections. However, its clinical application is limited because of its water insolubility and side effects. Herein, to apply the minimum dose of AmB that can be used to manage fungal infections, a targeted drug delivery system was designed using lipopeptides and poly(lactide-co-glycolide) (PLGA).
View Article and Find Full Text PDFEvery year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi.
View Article and Find Full Text PDFBiofilms are resistant to antibiotics and are a major source of persistent and recurring infections by clinically important pathogens. Drugs used for biofilm-associated infections are limited because biofilm-embedded or biofilm-matrix bacteria are difficult to kill or eradiate. Therefore, many researchers are developing new and effective antibiofilm agents.
View Article and Find Full Text PDFClinically, fungal pneumonia rarely occurs in adults, and invasive fungal infections can cause substantial morbidity, and mortality due to sepsis and septic shock. In the present study, we have designed peptides that exhibit potent antifungal activities against fluconazole-resistant in physiological monovalent, and divalent ionic buffers, with minimal fungicidal concentrations ranging from 16 to 32 µM. None of these tested peptides resulted in the development of drug resistance similar to fluconazole.
View Article and Find Full Text PDFAlthough considerable scientific research data is available for sepsis and cytokine storm syndrome, there is a need to develop new treatments or drugs for sepsis management. Antimicrobial peptides (AMPs) possess anti-bacterial and anti-inflammatory activity, neutralizing toxins such as lipopolysaccharides (LPS, endotoxin). Most AMPs have been designed as a substitute for conventional antibiotics, which kill drug-resistant pathogens.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) can combat drug-resistant bacteria with their unique membrane-disruptive mechanisms. This study aimed to investigate the antibacterial effects of several membrane-acting peptides with amphipathic structures and positional alterations of two tryptophan residues. The synthetic peptides exhibited potent antibacterial activities in a length-dependent manner against various pathogenic drug-resistant and susceptible bacteria.
View Article and Find Full Text PDFProfilins (PFNs) are actin monomer-binding proteins that function as antimicrobial agents in plant phloem sap. Although the roles of profilin protein isoforms (AtPFNs) in regulating actin polymerization have already been described, their biochemical and molecular functions remain to be elucidated. Interestingly, a previous study indicated that AtPFN2 with high molecular weight (HMW) complexes showed lower antifungal activity than AtPFN1 with low molecular weight (LMW).
View Article and Find Full Text PDFThe recent emergence of antibiotic-resistant fungi has accelerated research on novel antifungal agents. In particular, infections are related to biofilm formation on medical devices, such as catheters, stents, and contact lenses, resulting in high morbidity and mortality. In this study, we aimed to elucidate the antifungal and antibiofilm effects of a peptide against drug-resistant .
View Article and Find Full Text PDFDiscovering new antifungal agents is difficult, since, unlike bacteria, mammalian and fungal cells are both eukaryotes. An efficient strategy is to consider new antimicrobial proteins that have variety of action mechanisms. In this study, a cDNA encoding Vip3Aa protein, a vegetative insecticidal protein, was obtained at the vegetative growth stage; its antifungal activity and mechanism were evaluated using a bacterially expressed recombinant Vip3Aa protein.
View Article and Find Full Text PDFRecent advancements in gene delivery systems that specifically target a variety of cancer types have increased demand for tissue-specific gene therapy. The current study describes the synthesis of a copolymer (GPgWSC) composed of a polyethylenimine (PEI)-grafted water-soluble chitosan (WSC) and gambogic acid (GA). It was validated as a ligand capable of enabling targeted attachment to transferrin receptors in HCT116 cancer cell lines.
View Article and Find Full Text PDFSeveral antimicrobial peptides (AMPs) have been discovered, developed, and purified from natural sources and peptide engineering; however, the clinical applications of these AMPs are limited owing to their lack of abundance and side effects related to cytotoxicity, immunogenicity, and hemolytic activity. Accordingly, to improve cell selectivity for pseudin-2, an AMP from skin, in mammalian cells and pathogenic fungi, the sequence of pseudin-2 was modified by alanine or lysine at each position of two amino acids within the leucine-zipper motif. Alanine-substituted variants were highly selective toward fungi over HaCaT and erythrocytes and maintained their antifungal activities and mode of action (membranolysis).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Infectious diseases induced by multidrug-resistant bacteria are a challenging problem in medicine because of global rise in the drug resistance to pathogenic bacteria. Despite great efforts on the development of antibiotics and antimicrobial agents, there is still a great need to develop a strategy to early detect bacterial infections and eradicate bacteria effectively and simultaneously. The innate immune systems of various organisms produce antimicrobial peptides, which kill a broad range of bacteria with minimal cytotoxicity to mammalian cells.
View Article and Find Full Text PDFIt is difficult to identify new antifungal agents because of their eukaryotic nature. However, antimicrobial peptides can well differentiate among cell types owing to their variable amino acid content. This study aimed to investigate the antifungal effect of Hn-Mc, a chimeric peptide comprised of the N-terminus of HPA3NT3 and the C-terminus of melittin.
View Article and Find Full Text PDFBiofilm-associated infections are difficult to manage or treat as biofilms or biofilm-embedded bacteria are difficult to eradicate. Antimicrobial peptides have gained increasing attention as a possible alternative to conventional drugs to combat drug-resistant microorganisms because they inhibit the growth of planktonic bacteria by disrupting the cytoplasmic membrane. The current study investigated the effects of synthetic peptides (PS1-2, PS1-5, and PS1-6) and conventional antibiotics on the growth, biofilm formation, and biofilm reduction of drug-resistant and .
View Article and Find Full Text PDFAlthough there are many antimicrobial proteins in plants, they are not well-explored. Understanding the mechanism of action of plant antifungal proteins (AFPs) may help combat fungal infections that impact crop yields. In this study, we aimed to address this gap by screening leaves to isolate novel AFPs.
View Article and Find Full Text PDFPlants are constantly subjected to a variety of environmental stresses and have evolved regulatory responses to overcome unfavorable conditions that might reduce or adversely change a plant's growth or development. Among these, the regulated production of reactive oxygen species (ROS) as a signaling molecule occurs during plant development and pathogen defense. This study demonstrates the possible antifungal activity of Tetratricopeptide Domain-containing thioredoxin (OsTDX) protein against various fungal pathogens.
View Article and Find Full Text PDFIncreases in the numbers of immunocompromised patients and the emergence of drug-resistance fungal pathogens have led to the need for new, safe, efficacious antifungal agents. In this study, we designed a histidine-lysine-lysine (HKK) motif and synthesized six HKK peptides with repetitions of the motif. These peptides showed length-dependent antifungal activity against drug-susceptible and drug-resistant fungal pathogens via membranolytic or non-membranolytic action.
View Article and Find Full Text PDFThe increasing emergence of drug-resistant bacteria creates a requirement for new antibiotics and various types of antibiotic materials such as proteins, peptides, polymers, and chemical compounds. Among these, antimicrobial peptides (AMPs) are considered to be promising antibiotic candidates for clinical treatments. In this study, we have designed a novel series of peptides with repeated sequences of minimum membrane-active motif, 'XWZX' basic sequence (X: lysine or arginine, Z: leucine, tyrosine, valine, or glycine), and an α-helical secondary structure.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2018
Background: It remains an open question whether plant phloem sap proteins are functionally involved in plant defense mechanisms.
Methods: The antifungal effects of two profilin proteins from Arabidopsis thaliana, AtPFN1 and AtPFN2, were tested against 11 molds and 4 yeast fungal strains. Fluorescence profiling, biophysical, and biochemical analyses were employed to investigate their antifungal mechanism.
Introduction: Although numerous studies have been conducted with the aim of developing drug-delivery systems, chemically synthesized gene carriers have shown limited applications in the biomedical fields due to several problems, such as low-grafting yields, undesirable reactions, difficulties in controlling the reactions, and high-cost production owing to multi-step manufacturing processes.
Materials And Methods: We developed a 1-step synthesis process to produce 2-aminoethyl methacrylate-grafted water-soluble chitosan (AEMA-g-WSC) as a gene carrier, using gamma irradiation for simultaneous synthesis and sterilization, but no catalysts or photoinitiators. We analyzed the AEMA graft site on WSC using 2-dimensional nuclear magnetic resonance spectroscopy (2D NMR; 1H and 13C NMR), and assayed gene transfection effects in vitro and in vivo.
The highly conserved SGT1 (suppressor of the G2 alleles of skp1) proteins from Arabidopsis are known to contribute to plant resistance to pathogens. While SGT1 proteins respond to fungal pathogens, their antifungal activity is not reported and the mechanism for this inhibition is not well understood. Therefore, recombinant Arabidopsis SGT1 proteins were cloned, expressed, and purified to evaluate their antifungal activity, resulting in their potent inhibition of pathogen growth.
View Article and Find Full Text PDFThe safe and effective delivery of genetic material into cells is a necessary factor for gene therapy. Although a wide range of materials, methods, and combinations have been reported, successful gene therapy has been limited. In the present study, a targeted gene carrier for αβ integrin-overexpressing tumor cells was designed using widely applied materials containing water soluble chitosan (WSC), RGD peptide, and polyethyleneimine (PEI).
View Article and Find Full Text PDFAmphotericin B (AmB) has been widely used against fungal infections throughout almost the entire body, including the skin, nails, oral cavity, respiratory tract, and urinary tract. However, the development of AmB-loaded nanoparticles demands a novel technique that reduces its toxicity and other associated problems. Here, we developed a pH-responsive and redox-sensitive polymer-based AmB-delivery carrier system.
View Article and Find Full Text PDFAn antifungal protein, AtUSP protein (At3g53990), was isolated from Arabidopsis thaliana leaves by ion and size chromatography and sequenced by N-terminal sequencing. The AtUSP gene amplified from an Arabidopsis leaf cDNA library was transformed to Escherichia coli to express the AtUSP protein. The recombinant protein inhibited the cell growth of various pathogenic fungal strains.
View Article and Find Full Text PDF