Publications by authors named "Mi Y Noh"

Chitinases (CHT) comprise a large gene family in insects and have been classified into at least eleven subgroups. Many studies involving RNA interference (RNAi) have demonstrated that depletion of group I (CHT5s) and group II (CHT10s) CHT transcripts causes lethal molting arrest in several insect species including the red flour beetle, Tribolium castaneum, presumably due to failure of degradation of chitin in their old cuticle. In this study we investigated the functions of CHT5 and CHT10 in turnover of chitinous cuticle in T.

View Article and Find Full Text PDF

Insects must periodically replace their old cuticle/exoskeleton with a new one in a process called molting or ecdysis to allow for continuous growth through sequential developmental stages. Many RNA interference (RNAi) studies have demonstrated that certain chitinases (CHTs) play roles in this vital physiological event because knockdown of these CHT genes resulted in developmental arrest during the ensuing molting period in several insect species. In this research we analyzed the functions of group I (MaCHT5) and group II (MaCHT10) CHT genes in molting of the Japanese pine sawyer, Monochamus alternatus, an important forest pest known as a major vector of the pinewood nematode.

View Article and Find Full Text PDF

Most insects reproduce by laying eggs that have an eggshell/chorion secreted by follicle cells, which serves as a protective barrier for developing embryos. Thus, eggshell formation is vital for reproduction. Insect yellow family genes encode for secreted extracellular proteins that perform different, context-dependent functions in different tissues at various stages of development involving, for example, cuticle/eggshell coloration and morphology, molting, courtship behavior and embryo hatching.

View Article and Find Full Text PDF

Muscle attachment sites (MASs, apodemes) in insects and other arthropods involve specialized epithelial cells, called tendon cells or tenocytes, that adhere to apical extracellular matrices containing chitin. Here, we have uncovered a function for chitin deacetylases (CDAs) in arthropod locomotion and muscle attachment using a double-stranded RNA-mediated gene-silencing approach targeted toward specific CDA isoforms in the red flour beetle, (). Depletion of TcCDA1 or the alternatively spliced TcCDA2 isoform, TcCDA2a, resulted in internal tendon cuticle breakage at the femur-tibia joint, muscle detachment from both internal and external tendon cells, and defective locomotion.

View Article and Find Full Text PDF

Microbial lytic polysaccharide monooxygenases (LPMOs) catalyze the oxidative cleavage of crystalline polysaccharides including chitin and cellulose. The discovery of a large assortment of LPMO-like proteins widely distributed in insect genomes suggests that they could be involved in assisting chitin degradation in the exoskeleton, tracheae and peritrophic matrix during development. However, the physiological functions of insect LPMO-like proteins are still undetermined.

View Article and Find Full Text PDF

Background: Beauveria bassiana is one of the commercially available entomopathogenic fungi (EPF), and a number of isolates with high virulence and broad host spectrum have been used to control agricultural and forest pests. Although the functional importance of genes in EPFs' pathogenesis have been extensively studied, the precise ultrastructural mechanism of the fungal infection, particularly penetration of the host insect cuticles, is not well understood.

Results: In this study, we investigated the morphology and ultrastructure of the larval cuticle of the red flour beetle, Tribolium castaneum, after treatment with B.

View Article and Find Full Text PDF

The body form of holometabolous insects dramatically transforms from larval to adult stages during metamorphosis that occurs in the pupal stage. The larval disorganization and then new adult tissues are built up at this time. In motoneuron, larval neuronal cells degenerate, and new adult neurons are remodeled.

View Article and Find Full Text PDF

The Asian tiger mosquito, , is one of the most serious public health pests, which can transmit various vector-borne diseases. Eggs from this mosquito species become dark black shortly after oviposition and exhibit high desiccation resistance. Some of the Yellow proteins that act as dopachrome conversion enzymes (DCEs) are involved in the tyrosine-mediated tanning (pigmentation and sclerotization) metabolic pathway that significantly accelerates melanization reactions in insects.

View Article and Find Full Text PDF

Beetles possess a set of highly modified and tanned forewings, elytra, which are lightweight yet rigid and tough. Immediately after eclosion, the elytra are initially thin, pale and soft. However, they rapidly expand and subsequently become hardened and often dark, resulting from both pigmentation and sclerotization.

View Article and Find Full Text PDF

Chitin contributes to the rigidity of the insect cuticle and serves as an attachment matrix for other cuticular proteins. Deficiency of chitin results in abnormal embryos, cuticular structural defects and growth arrest. When chitin is not turned over during molting, the developing insect is trapped inside the old cuticle.

View Article and Find Full Text PDF

Eggs from Aedes mosquitoes exhibit desiccation resistance that helps them to survive and spread as human disease vectors throughout the world. Previous studies have suggested that eggshell/chorion melanization and/or serosal cuticle formation are important for desiccation resistance. In this study, using dsRNAs for target genes, we analyzed the functional importance of two ovary-specific yellow genes, AalY-g and AalY-g2, in the resistance to egg desiccation of the Asian tiger mosquito, Aedes albopictus, a species in which neither the timing of the melanization nor temporal development of the serosal cuticle is correlated with desiccation resistance.

View Article and Find Full Text PDF

In many arthropod species including insects, the cuticle tanning pathway for both pigmentation and sclerotization begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments, some of which are major pigments for body coloration. In this study we identified and cloned cDNAs of the yellow mealworm, Tenebrio molitor, encoding seven key enzymes involved in this pathway including tyrosine hydroxylase (TmTH), DOPA decarboxylase (TmDDC), laccase 2 (TmLac2), Yellow-y (TmY-y), arylalkylamine N-acetyltransferase (TmAANAT1), aspartate 1-decarboxylase (TmADC) and N-β-alanyldopamine synthase (Tmebony). Expression profiles of these genes during development were analyzed by real-time PCR, revealing development-specific patterns of expression.

View Article and Find Full Text PDF

The yellow fever mosquito, , vectors human pathogens. Juvenile hormones (JH) control almost every aspect of an insect's life, and JH analogs are currently used to control mosquito larvae. Since RNA interference does not work efficiently during the larval stages of this insect, JH regulation of larval development and mode of action of JH analogs are not well studied.

View Article and Find Full Text PDF

Cryogels have recently gained interest in the field of tissue engineering as they inherently possess an interconnected macroporous structure. Considered to be suitable for scaffold cryogel fabrication, methacrylated gelatin (GelMA) is a modified form of gelatin valued for its ability to retain cell adhesion site. Bioglass nanoparticles have also attracted attention in the field due to their osteoinductive and osteoconductive behavior.

View Article and Find Full Text PDF

Dengue virus (DENV) is transmitted by mosquitoes and is a major public health concern. The study of innate mosquito defense mechanisms against DENV have revealed crucial roles for the Toll, Imd, JAK-STAT, and RNAi pathways in mediating DENV in the mosquito. Often overlooked in such studies is the role of intrinsic cellular defense mechanisms that we hypothesize to work in concert with the classical immune pathways to affect organismal defense.

View Article and Find Full Text PDF

RNA interference is widely used to analyze gene functions via phenotypic knockdown of target transcripts in mosquitoes, which transmit numerous mosquito-borne diseases. Functional analysis of mosquito genes is indispensable to understand and reduce transmission of mosquito-borne diseases in mosquitoes. Intrathoracic injection of double-stranded RNA (dsRNA) remains the simplest and most customizable method in mosquitoes for functional analysis of the genes of interest.

View Article and Find Full Text PDF

Ellobium chinense (Pfeiffer, 1854) is a brackish pulmonate species that inhabits the bases of mangrove trees and is most commonly found in salt grass meadows. Threats to mangrove ecosystems due to habitat degradation and overexploitation have threatened the species with extinction. In South Korea, E.

View Article and Find Full Text PDF

Insect cuticle or exoskeleton is an extracellular matrix formed primarily from two different structural biopolymers, chitin and protein. During each molt cycle, a new cuticle is deposited simultaneously with degradation of the inner part of the chitinous procuticle of the overlying old exoskeleton by molting fluid enzymes including epidermal chitinases. In this study we report a novel role for an epidermal endochitinase containing two catalytic domains, TcCHT7, from the red flour beetle, Tribolium castaneum, in organizing chitin in the newly forming cuticle rather than in degrading chitin present in the prior one.

View Article and Find Full Text PDF

Roles in the organization of the cuticle (exoskeleton) of two chitin deacetylases (CDAs) belonging to group I, and , as well as two alternatively spliced forms of the latter, and , from the red flour beetle, , were examined in different body parts using transmission EM and RNAi. Even though all are co-expressed in cuticle-forming cells from the hardened forewing (elytron) and ventral abdomen, as well as in the softer hindwing and dorsal abdomen, there are significant differences in the tissue specificity of expression of the alternatively spliced transcripts. Loss of either TcCDA1 or TcCDA2 protein by RNAi causes abnormalities in organization of chitinous horizontal laminae and vertical pore canals in all regions of the procuticle of both the hard and soft cuticles.

View Article and Find Full Text PDF

Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle).

View Article and Find Full Text PDF

Scavenger receptors (SRs) constitute a family of membrane-bound receptors that bind to multiple ligands. The SR family of proteins is involved in removing cellular debris, oxidized low-density lipoproteins, and pathogens. Specifically, class C scavenger receptors (SR-C) have also been reported to be involved in phagocytosis of gram-positive and -negative bacteria in Drosophila and viruses in shrimp.

View Article and Find Full Text PDF

Cactin was originally identified as an interactor of the Drosophila IκB factor Cactus and shown to play a role in controlling embryonic polarity and regulating the NF-κB signaling pathway. While subsequent studies have identified the roles for Cactin in the mammalian immune response, the immune function of Cactin in insects has not been described yet. Here, we identified a Cactin gene from the mealworm beetle, Tenebrio molitor (TmCactin) and characterized its functional role in innate immunity.

View Article and Find Full Text PDF

The tadpole shrimp ( is an aquatic crustacean that helps control pest populations. It inhabits freshwater ponds and pools and has been described as a living fossil. was officially declared an endangered species South Korea in 2005; however, through subsequent protection and conservation management, it was removed from the endangered species list in 2012.

View Article and Find Full Text PDF

In the insect cuticle tanning pathway (sclerotization and pigmentation), the enzyme arylalkylamine N-acetyltransferase (AANAT) catalyzes the acetylation of dopamine to form N-acetyldopamine (NADA), which is one of the major precursors for quinone-mediated tanning. In this study we characterized and investigated the function of TcAANAT1 in cuticle pigmentation of the red flour beetle, Tribolium castaneum. We isolated a full length TcAANAT1 cDNA that encodes a protein of 256 amino acid residues with a predicted GCN5-related acetyltransferase domain containing an acetyl-CoA binding motif.

View Article and Find Full Text PDF

Adult beetles (Coleoptera) are covered primarily by a hard exoskeleton or cuticle. For example, the beetle elytron is a cuticle-rich highly modified forewing structure that shields the underlying hindwing and dorsal body surface from a variety of harmful environmental factors by acting as an armor plate. The elytron comes in a variety of colors and shapes depending on the coleopteran species.

View Article and Find Full Text PDF