By virtue of the critical roles of Akt in vascular endothelial cell (EC) survival and function, cigarette smoke-induced Akt reduction may contribute to EC death and dysfunction in smokers' lungs. One of the negative Akt regulatory mechanisms is K48-linked Akt ubiquitination and subsequent proteasomal degradation. Here, we assessed the involvement of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), recently revealed as a novel Akt ubiquitin E3 ligase, in cigarette smoke-induced Akt ubiquitination and its contribution to pulmonary EC death and dysfunction.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2012
Vascular remodeling and endothelial dysfunction are important pathogenic features of pulmonary arterial hypertension (PAH). There is a growing body of evidence that proteasome inhibitors may be beneficial in vascular diseases by inhibiting proliferation of vascular smooth muscle cells (VSMCs) and ameliorating endothelial dysfunction. Here, we evaluated whether bortezomib (BTZ) could alleviate hypoxia- and monocrotaline (MCT)-induced PAH.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2012
Cigarette smoking causes apoptotic death, senescence, and impairment of repair functions in lung fibroblasts, which maintain the integrity of alveolar structure by producing extracellular matrix (ECM) proteins. Therefore, recovery of lung fibroblasts from cigarette smoke-induced damage may be crucial in regeneration of emphysematous lung resulting from degradation of ECM proteins and subsequent loss of alveolar cells. Recently, we reported that bone marrow-derived mesenchymal stem cell-conditioned media (MSC-CM) led to angiogenesis and regeneration of lung damaged by cigarette smoke.
View Article and Find Full Text PDF