Clin Oncol (R Coll Radiol)
October 2024
Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. subsp. (), the causal agent of citrus canker, encodes an M23 peptidase EnvC homolog.
View Article and Find Full Text PDFMicroorganisms have a limited and highly adaptable repertoire of genes capable of encoding proteins containing single or variable multidomains. The phytopathogenic bacteria subsp. () ( family), the etiological agent of Citrus Canker (CC), presents a collection of multidomain and multifunctional enzymes (MFEs) that remains to be explored.
View Article and Find Full Text PDFMicrobiol Res
June 2021
Plant-associated microbiomes have been a target of interest for the prospection of microorganisms, which may be acting as effectors to increase agricultural productivity. For years, the search for beneficial microorganisms has been carried out from the characterization of functional traits of growth-promotion using tests with a few isolates. However, eventually, the expectations with positive results may not be realized when the evaluation is performed in association with plants.
View Article and Find Full Text PDFDatabase (Oxford)
January 2020
Citrus canker type A is a serious disease caused by Xanthomonas citri subsp. citri (X. citri), which is responsible for severe losses to growers and to the citrus industry worldwide.
View Article and Find Full Text PDFFluorescent markers are a powerful tool and have been widely applied in biology for different purposes. The genome sequence of Xanthomonas citri subsp. citri (X.
View Article and Find Full Text PDFSci Rep
November 2019
Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features.
View Article and Find Full Text PDFBuffalo milk production has become of significant importance on the world scale, however, there are few studies involving biotechnological tools specifically for buffalo. To verify the effects caused by subclinical mastitis on the components of milk and to study the innate immune system in the udder of dairy buffaloes with subclinical mastitis, we evaluated the levels of expression of the lactoferrin (LTF), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-8 (IL-8), and toll-like receptors 2 (TLR-2) and 4 (TLR-4) genes in buffaloes with and without subclinical mastitis. Milk samples were collected for the determination of milk components: somatic cell score (SCS), fat, protein, lactose, total solids and solids-not-fat (SNF), as well as for RNA extraction of milk cells, complementary DNA synthesis, and expression profile quantification by quantitative real-time PCR.
View Article and Find Full Text PDFsubsp. 306 (XccA) is the causal agent of type A citrus canker (CC), one of the most significant citriculture diseases. Murein lytic transglycosylases (LT), potentially involved in XccA pathogenicity, are enzymes responsible for peptidoglycan structure assembly, remodeling and degradation.
View Article and Find Full Text PDFBioresour Technol
November 2017
Biogas production from sugarcane vinasse has enormous economic, energy, and environmental management potential. However, methane production stability and biodigested vinasse quality remain key issues, requiring better nutrient and alkalinity availability, operational strategies, and knowledge of reactor microbiota. This study demonstrates increased methane production from vinasse through the use of sugarcane filter cake and improved effluent recirculation, with elevated organic loading rates (OLR) and good reactor stability.
View Article and Find Full Text PDFBMC Microbiol
July 2017
Background: Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. A proteomic analysis under in planta infectious and non-infectious conditions was conducted in order to increase our knowledge about the adaptive process of Xac during infection.
View Article and Find Full Text PDFSugarcane production is strongly influenced by drought, which is a limiting factor for agricultural productivity in the world. In this study, the gene expression profiles obtained by de novo assembly of the leaf transcriptome of two sugarcane cultivars that differ in their physiological response to water deficit were evaluated by the RNA-Seq method: drought-tolerant cultivar (SP81-3250) and drought-sensitive cultivar (RB855453). For this purpose, plants were grown in a greenhouse for 60 days and were then submitted to three treatments: control (-0.
View Article and Find Full Text PDFCitrus canker, caused by the Gram-negative bacterium Xanthomonas citri subsp citri (Xac), is a major disease affecting citriculture worldwide, because of the susceptibility of the host and the lack of efficient control methods. Previous studies have reported that some genes of phytopathogenic bacteria possess a consensus nucleotide sequence (TTCGC..
View Article and Find Full Text PDFCitrus canker is a major disease affecting citrus production in Brazil. It's mainly caused by Xanthomonas citri subsp. citri strain 306 pathotype A (Xac).
View Article and Find Full Text PDFBioresour Technol
December 2015
A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.
View Article and Find Full Text PDFDrought is one of the most frequent abiotic stresses limiting the productivity and geographical distribution of sugarcane culture. The use of drought-tolerant genotypes is one approach for overcoming the effects of water stress. We conducted a comparative study to identify gene expression profiles under water stress in tolerant sugarcane roots.
View Article and Find Full Text PDFmBio
February 2015
Unlabelled: Members of the genus Xanthomonas are among the most important phytopathogens. A key feature of Xanthomonas pathogenesis is the translocation of type III secretion system (T3SS) effector proteins (T3SEs) into the plant target cells via a T3SS. Several T3SEs and a murein lytic transglycosylase gene (mlt, required for citrus canker symptoms) are found associated with three transposition-related genes in Xanthomonas citri plasmid pXAC64.
View Article and Find Full Text PDFFunct Integr Genomics
March 2015
The genome of Xanthomonas citri subsp. Citri strain 306 pathotype A (Xac) was completely sequenced more than 10 years; to date, few studies involving functional genomics Xac and its host compatible have been developed, specially related to adaptive events that allow the survival of Xac within the plant. Proteomic analysis of Xac showed that the processes of chemotactic signal transduction and phosphate metabolism are key adaptive strategies during the interaction of a pathogenic bacterium with its plant host.
View Article and Find Full Text PDFThe type IV secretion system (T4SS) is used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Xanthomonas citri subsp. citri contains two copies of the T4SS, one in the chromosome and the other is plasmid-encoded.
View Article and Find Full Text PDFFunct Integr Genomics
March 2014
The bacteria Xanthomonas citri subsp. citri (Xac) is the causal agent of citrus canker. The disease symptoms are characterized by localized host cell hyperplasia followed by tissue necrosis at the infected area.
View Article and Find Full Text PDFAnopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A.
View Article and Find Full Text PDFExclusion and eradication or management based on an integrated approach with less susceptible varieties, copper-based bactericides, and windbreaks are the two main strategies used to prevent or control citrus canker. Field tolerance or resistance to citrus canker is not found in the most important commercial sweet orange cultivars, and pathogen-derived resistance has been developed and applied in different crops to obtain resistant genotypes to plant pathogens. We describe the development of DNA primers and probes based on the type III effector genes avrXacE1, avrXacE2, avrXacE3, avrBs2, pthA4, hpaF, and XAC3090 (leucine rich protein), and their application in the evaluation of the genetic diversity of the pathogen.
View Article and Find Full Text PDFBackground: Corynebacterium pseudotuberculosis, a gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America.
View Article and Find Full Text PDFXanthomonas citri subsp. citri (Xcc) causes citrus canker, a worldwide disease found mainly in sweet oranges (Citrus sinensis (L.) Osbeck).
View Article and Find Full Text PDFBackground: Citrus canker is a disease caused by Xantomonas citri subsp.citri (Xac), and has emerged as one of the major threats to the worldwide citrus crop because it affects all commercial citrus varieties, decreases the production and quality of the fruits and can spread rapidly in citrus growing areas. In this work, the first proteome of Xac was analyzed using two methodologies, two-dimensional liquid chromatography (2D LC) and tandem mass spectrometry (MS/MS).
View Article and Find Full Text PDF