Optical characteristics and microstructure of multilayered zirconia with different yttria contents in each layer can be influenced differently with a layer after speed sintering. The layer-wise translucency and opalescence of dental zirconia (E.max, E.
View Article and Find Full Text PDFBackgrounds: The expression of major histocompatibility complex I (MHC-I) in neurons has recently been shown to regulate neurite outgrowth and synaptic plasticity. However, its contribution to neurodegenerative diseases such as Alzheimer's disease (AD) remains largely unknown.
Methods: In this study, we investigated the relationship between impaired MHC-I-β2M complex and AD in vitro and human AD samples.
As dental 5 mol% yttria-stabilized (5Y-) zirconia demand high esthetics, it is necessary to clarify how the optical properties are affected by high-speed sintering, which is not yet fully understood. Our study aimed to investigate the effect of high-speed sintering on the translucency and opalescence parameters (TP and OP, respectively), as well as their related microstructure and phase distribution, using two types of multilayered 5Y-zirconia. Multilayered 5Y-zirconia (Cercon xt ML, Lava Esthetic) were cut layer-by-layer, followed by conventional and high-speed sintering.
View Article and Find Full Text PDFThe differences in the optical properties of multi-layered zirconia with and without yttria-gradient are not fully understood. This study aimed to evaluate and compare the optical properties, related microstructures, and phase fractions of multi-layered zirconia with and without yttria-gradient. For this, multi-layered zirconia of 5 mol% yttria (5Y) stabilized (Katana STML) and 4Y/5Y stabilized (e.
View Article and Find Full Text PDFGlazing is the final heat treatment process in the manufacturing of a monolithic zirconia prosthesis. Herein, the effect of cooling rate during zirconia glazing was investigated. A 3 mol% yttria-stabilized tetragonal zirconia polycrystal was glazed at the general cooling rate suggested by the manufacturer, as well as at higher and lower cooling rates, and the differences in flexural strength, hardness, optical properties, and crystal structure were evaluated.
View Article and Find Full Text PDFThe link between Val232Met variant of phospholipase D3 (PLD3) and late-onset Alzheimer's disease (AD) is still obscure. While it may not affect directly the amyloid precursor protein function, PLD3 could be regulating multiple cellular compartments. Here, we investigated the function of wild-type human PLD3 (PLD3) and the Val232Met variant (PLD3) in the presence of β-amyloid (Aβ) in a Drosophila melanogaster model of AD.
View Article and Find Full Text PDFBackground: Intracranial accumulation of amyloid-β (Aβ) is a characteristic finding of Alzheimer's disease (AD). It is thought to be the result of Aβ overproduction by neurons and impaired clearance by several systems, including degradation by microglia. Sleep disturbance is now considered a risk factor for AD, but studies focusing on how sleep modulates microglial handling of Aβ have been scarce.
View Article and Find Full Text PDFBackground: Amyloid precursor protein (APP) is cleaved by β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) to produce β-amyloid (Aβ), a critical pathogenic peptide in Alzheimer's disease (AD). Aβ generation can be affected by the intracellular trafficking of APP or its related secretases, which is thus important to understanding its pathological alterations. Although sorting nexin (SNX) family proteins regulate this trafficking, the relevance and role of sorting nexin-4 (SNX4) regarding AD has not been studied yet.
View Article and Find Full Text PDFObesity-induced insulin resistance and diabetes are significantly associated with infiltrates of inflammatory cells in adipose tissue. Previous studies recognized the involvement of autophagy in the regulation of metabolism in multiple tissues, including β-cells, hepatocytes, myocytes, and adipocytes. However, despite the importance of macrophages in obesity-induced insulin resistance, the role of macrophage autophagy in regulating insulin sensitivity is seldom addressed.
View Article and Find Full Text PDFToxicity induced by aberrant protein aggregates in Alzheimer's disease (AD) causes synaptic disconnection and concomitant progressive neurodegeneration that eventually impair cognitive function. cAMP-response element-binding protein (CREB) is a transcription factor involved in the molecular switch that converts short-term to long-term memory. Although disturbances in CREB function have been suggested to cause memory deficits in both AD and AD animal models, the mechanism of CREB dysfunction is still unclear.
View Article and Find Full Text PDFJ Antibiot (Tokyo)
February 2015
Systemic inflammatory response syndrome (SIRS) is a serious condition that can cause organ failure as an exaggerated immunoresponse to the infection or other causes. Recently, autophagy was reported as a key process that regulates inflammatory responses in macrophages. Vancomycin is one of the most commonly prescribed antibiotics for sepsis treatment or following surgery.
View Article and Find Full Text PDFAccumulation of β-amyloid (Aβ) and resultant inflammation are critical pathological features of Alzheimer disease (AD). Microglia, a primary immune cell in brain, ingests and degrades extracellular Aβ fibrils via the lysosomal system. Autophagy is a catabolic process that degrades native cellular components, however, the role of autophagy in Aβ degradation by microglia and its effects on AD are unknown.
View Article and Find Full Text PDFThe assessment of the biological activity of capsaicin, the compound responsible for the spicy flavor of chili pepper, produced controversial results, showing either carcinogenicity or cancer prevention. The innate immune system plays a pivotal role in cancer pathology and prevention; yet, the effect of capsaicin on natural killer (NK) cells, which function in cancer surveillance, is unclear. This study found that capsaicin inhibited NK cell-mediated cytotoxicity and cytokine production (interferon-γ and tumor necrosis factor-α).
View Article and Find Full Text PDFMitochondrial dysfunction is a prominent feature of neurodegenerative diseases and aging. A recent study showed that phosphorylation of dynamin-related protein 1 (Drp1) is increased in Alzheimer's disease (AD) brains compared to control brains, indicating that mitochondrial fission is increased in AD brains. Here, we showed that Drp1 phosphorylation and mitochondrial fission were also increased in rat cortical neurons treated with okadaic acid (OA), which inhibits protein phosphatase-2A (PP2A) and induces AD-like tau phosphorylation and neuronal death.
View Article and Find Full Text PDFDetermination of structures and functions of pattern recognition proteins are important for understanding pathogen recognition mechanisms in host defense and for elucidating the activation mechanism of innate immune reactions. In this study, a novel 40-kDa protein, named LPS recognition protein (LRP), was purified to homogeneity from the cell-free plasma of larvae of the large beetle, Holotrichia diomphalia. LRP exhibited agglutinating activities on Escherichia coli, but not on Staphylococcus aureus and Candida albicans.
View Article and Find Full Text PDF