Publications by authors named "Mhairi Gass"

Zirconium alloys are used in safety-critical roles in the nuclear industry and their degradation due to ingress of hydrogen in service is a concern. In this work experimental evidence, supported by density functional theory modelling, shows that the α-Zr matrix surrounding second phase particles acts as a trapping site for hydrogen, which has not been previously reported in zirconium. This is unaccounted for in current models of hydrogen behaviour in Zr alloys and as such could impact development of these models.

View Article and Find Full Text PDF

Demand for carbon nanotubes (CNTs) is increasing rapidly in electrical, mechanical, and health and medical applications due to their thermal, electrical conductive and other properties. The continued commercial up-scaling of CNT production and application needs to be accompanied by an understanding of the occupational health, public safety and environmental implications of these materials. An increasing volume of literature on the toxicity of CNTs is being published; however, the results of these studies are frequently inconclusive.

View Article and Find Full Text PDF

Identification of individual single wall nanotubes (SWNTs) within a cellular structure can provide vital information towards understanding the potential mechanisms of uptake, their localisation and whether their structure is transformed within a cell. To be able to image an individual SWNT in such an environment a resolution is required that is not usually appropriate for biological sections. Standard transmission electron microscopy (TEM) techniques such as bright field imaging of these cellular structures result in very weak contrast.

View Article and Find Full Text PDF

Gold nanoparticles are obtained by reduction of a Au(iii) precursor within an agarose hydrogel where they form percolating networks upon partial dehydration and shrinkage of the gel.

View Article and Find Full Text PDF

A strategy for establishing electrical contact to the metal center of a redox metalloenzyme, galactose oxidase (GOase), by coordination of a linker attached to a monolayer-protected gold cluster is presented. The cluster-enzyme hybrid system was first prepared in solution and characterized by high-angle annular dark-field scanning transmission electron microscopy. Electrochemical communication between a gold electrode and GOase was achieved by first modifying the electrode surface with a biphenyl dithiol self-assembled monolayer followed by reaction with gold clusters capped with thioctic acid.

View Article and Find Full Text PDF

Water-soluble single-walled nanotubes (SWNTs) are being tested as contrast agents for medical imaging and for the delivery of therapeutically active molecules to target cells. However, before they become used commercially, it will be essential to establish their subcellular distribution and whether they are cytotoxic. Here we characterize uptake of unlabeled, acid-treated, water-soluble SWNTs by human monocyte derived macrophage cells using a combination of Raman spectroscopy and analytical electron microscopy and compare our findings to previous work on unpurified SWNTs.

View Article and Find Full Text PDF

We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis.

View Article and Find Full Text PDF

Magnetic nanocomposite materials consisting of 5.5 wt% Fe-Co alloy nanoparticles in a silica aerogel matrix, with compositions Fe(x)Co(1-x) of x = 0.50 and 0.

View Article and Find Full Text PDF

Small particles with face-centred cubic structures can have non-single-crystallographic shapes. Here, an approach based on annular dark-field scanning transmission electron microscopy (STEM) is used to obtain information about the crystal sub-units that make up supported and unsupported twinned Pt, Pt alloy and Au nanoparticles. The three-dimensional shapes of two types of lamellar-twinned particles (LTPs) of Pt are obtained using high-angle annular dark-field STEM.

View Article and Find Full Text PDF

Ferritin, the major iron storage protein, has dual functions; it sequesters redox activity of intracellular iron and facilitates iron turn-over. Here we present high angle annular dark field (HAADF) images from individual hepatic ferritin cores within tissue sections, these images were obtained using spherical aberration corrected scanning transmission electron microscopy (STEM) under controlled electron fluence. HAADF images of the cores suggest a cubic morphology and a polycrystalline (ferrihydrite) subunit structure that is not evident in equivalent bright field images.

View Article and Find Full Text PDF

Research interest in graphene, a two-dimensional crystal consisting of a single atomic plane of carbon atoms, has been driven by its extraordinary properties, including charge carriers that mimic ultra-relativistic elementary particles. Moreover, graphene exhibits ballistic electron transport on the submicrometre scale, even at room temperature, which has allowed the demonstration of graphene-based field-effect transistors and the observation of a room-temperature quantum Hall effect. Here we confirm the presence of free-standing, single-layer graphene with directly interpretable atomic-resolution imaging combined with the spatially resolved study of both the pi --> pi* transition and the pi + sigma plasmon.

View Article and Find Full Text PDF

The potential for the metal nanocatalyst to contaminate vapour-liquid-solid grown semiconductor nanowires has been a long-standing concern, because the most common catalyst material, Au, is highly detrimental to the performance of minority carrier electronic devices. We have detected single Au atoms in Si nanowires grown using Au nanocatalyst particles in a vapour-liquid-solid process. Using high-angle annular dark-field scanning transmission electron microscopy, Au atoms were observed in higher numbers than expected from a simple extrapolation of the bulk solubility to the low growth temperature.

View Article and Find Full Text PDF

The development of single-walled carbon nanotubes for various biomedical applications is an area of great promise. However, the contradictory data on the toxic effects of single-walled carbon nanotubes highlight the need for alternative ways to study their uptake and cytotoxic effects in cells. Single-walled carbon nanotubes have been shown to be acutely toxic in a number of types of cells, but the direct observation of cellular uptake of single-walled carbon nanotubes has not been demonstrated previously due to difficulties in discriminating carbon-based nanotubes from carbon-rich cell structures.

View Article and Find Full Text PDF

Nanocrystals are under active investigation because of their interesting size-dependent properties and potential applications. Silicon nanocrystals have been studied for possible uses in optoelectronics, and may be relevant to the understanding of natural processes such as lightning strikes. Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au and CdSe clusters.

View Article and Find Full Text PDF

The properties of suspended graphene are currently attracting enormous interest, but the small size of available samples and the difficulties in making them severely restrict the number of experimental techniques that can be used to study the optical, mechanical, electronic, thermal, and other characteristics of this one-atom-thick material. Here, we describe a new and highly reliable approach for making graphene membranes of a macroscopic size (currently up to 100 microm in diameter) and their characterization by transmission electron microscopy. In particular, we have found that long graphene beams supported by only one side do not scroll or fold, in striking contrast to the current perception of graphene as a supple thin fabric, but demonstrate sufficient stiffness to support extremely large loads, millions of times exceeding their own weight, in agreement with the presented theory.

View Article and Find Full Text PDF

Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g.

View Article and Find Full Text PDF

Concerns have been raised over the release of C60 nanoparticles into the environment and the potential risk to human health. To address these concerns it is essential to understand the pathways by which nanoparticles enter the cell, where they migrate to, and to establish whether the particles are transformed or modified within the cell. Imaging the subcellular distribution of carbon-based nanoparticles is particularly challenging.

View Article and Find Full Text PDF

There is considerable interest in the adhesion of polymers to carbon nanotubes for nanocomposite applications.(1-4) One example is multiwalled carbon nanotubes (MWCNTs) dispersed in nylon 6,6.(5) We will show that high-contrast tomographic reconstructions can be created from plasmon-loss electrons that show the three-dimensional structural complexity of the MWCNT-nylon composite at the nanoscale.

View Article and Find Full Text PDF