Publications by authors named "Mezzetti B"

Selectable marker genes are useful for recognizing which cells have integrated specific sequences in their genome after genetic transformation processes. They are especially important for fruit trees genetic transformation to individuate putatively genetically modified events, because most of the protocols used to genetic engineer these species are often unsuccessful or with low efficiency. Traditional selectable marker genes, mainly of bacterial origin, confer antibiotics/herbicides-resistance or metabolic advantages to transformed cells.

View Article and Find Full Text PDF

Uterine leiomyomas are the most common benign, monoclonal, gynaecological tumors in a woman's uterus, while leiomyosarcoma is a rare but aggressive condition caused by the malignant transformation of the myometrium. To overcome the common obstacles related to the methods usually used to study these pathologies, we aimed to devise three-dimensional models of myometrium, uterine leiomyoma and leiomyosarcoma cell lines, using two different types of biocompatible scaffolds. Specifically, we exploited the agarose gel matrix in common 6-well plates and the alginate matrix using Bioprinting INKREDIBLE + (CELLINK), a pneumatic extruded base equipped with a system with double printheads, and a UV printer LED curing system.

View Article and Find Full Text PDF

Gene silencing of BcDCL genes improves gray mold disease control in the cultivated strawberry. Gene silencing technology offers new opportunities to develop new formulations or new pathogen-resistant plants for reducing impacts of agricultural systems. Recent studies offered the proof of concept that the symptoms of gray mold can be reduced by downregulating Dicer-like 1 (DCL1) and 2 (DCL2) genes of Botrytis cinerea.

View Article and Find Full Text PDF

The cultivated garden strawberry (Fragaria × ananassa) has a rich history, originating from the hybridization of two wild octoploid strawberry species in the 18th century. Two-step reconstruction of Fragaria × ananassa through controlled crossings between pre-improved selections of its parental species is a promising approach for enriching the breeding germplasm of strawberry for wider adaptability. We created a population of reconstructed strawberry by hybridizing elite selections of F.

View Article and Find Full Text PDF

Flowering time (FT), which determines when fruits or seeds can be harvested, is subject to phenotypic plasticity, that is, the ability of a genotype to display different phenotypes in response to environmental variation. Here, we investigated how the environment affects the genetic architecture of FT in cultivated strawberry (Fragaria × ananassa) and modifies its quantitative trait locus (QTL) effects. To this end, we used a bi-parental segregating population grown for 2 years at widely divergent latitudes (five European countries) and combined climatic variables with genomic data (Affymetrix SNP array).

View Article and Find Full Text PDF

In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes.

View Article and Find Full Text PDF

Strawberry is the most cultivated berry fruit globally and it is really appreciated by consumers because of its characteristics, mainly bioactive compounds with antioxidant properties. During the breeding process, it is important to assess the quality characteristics of the fruits for a better selection of the material, but the conventional approaches involve long and destructive lab techniques. Near infrared spectroscopy (NIR) could be considered a valid alternative for speeding up the breeding process and is not destructive.

View Article and Find Full Text PDF
Article Synopsis
  • Plant genetic transformation enhances fruit tree breeding for disease tolerance and quality, but many grapevine cultivars are difficult to transform.
  • New methods using cotyledons and hypocotyls from specific grape varieties (Ancellotta and Lambrusco Salamino) show effective regeneration when compared to a commonly used model (Thompson Seedless).
  • Optimal culture conditions demonstrate that cotyledons from Ancellotta and Lambrusco Salamino yielded higher transformation efficiencies on M2 medium, particularly in producing fluorescent calli, while achieving efficient regeneration of transgenic lines in Thompson Seedless.
View Article and Find Full Text PDF

Leiomyosarcoma is an aggressive soft tissue sarcoma derived from the smooth muscle cells of the uterus. We tested the effect of Romina strawberry extract treatment on three-dimensional cultured uterine leiomyosarcoma cells. We established 3D cultures in agarose gel, where the cells seeded were able to form spheroids.

View Article and Find Full Text PDF

Strawberry ( × ) fruits are an excellent source of -ascorbic acid (AsA), a powerful antioxidant for plants and humans. Identifying the genetic components underlying AsA accumulation is crucial for enhancing strawberry nutritional quality. Here, we unravel the genetic architecture of AsA accumulation using an F population derived from parental lines 'Candonga' and 'Senga Sengana', adapted to distinct Southern and Northern European areas.

View Article and Find Full Text PDF

Spray-Induced Gene Silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of dsRNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for dsRNA encapsulation and control against the fungal pathogen, .

View Article and Find Full Text PDF

Climate change is deeply impacting the food chain production, lowering quality and yield. In this context, the international scientific community has dedicated many efforts to enhancing resilience and sustainability in agriculture. Italy is among the main European producers of several fruit trees; therefore, national research centers and universities undertook several initiatives to maintain the specificity of the 'Made in Italy' label.

View Article and Find Full Text PDF

Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea.

View Article and Find Full Text PDF
Article Synopsis
  • Digital technologies and open innovation have led to the creation of virtual organizations, exemplified by the International Natural Product Sciences Taskforce (INPST), established in 2018 for collaboration in natural product research.
  • The INPST utilized Twitter for a week-long networking event in June 2021, using the hashtag #INPST to facilitate interactions among participants.
  • Analysis of the event revealed 6,036 tweets from 686 users, resulting in over 65 million impressions, highlighting Twitter's effectiveness for hosting international biomedical research discussions.
View Article and Find Full Text PDF

The mannose-binding lectin gene MANNOSE-BINDING LECTIN 1 (MBL1) is a member of the G-type lectin family and is involved in defense in strawberry (Fragaria × ananassa). Genome-wide identification of the G-type lectin family was carried out in woodland strawberry, F. vesca, and 133 G-lectin genes were found.

View Article and Find Full Text PDF

Fresh berries are a popular and important component of the human diet. The demand for high-quality berries and sustainable production methods is increasing globally, challenging breeders to develop modern berry cultivars that fulfill all desired characteristics. Since 1994, research projects have characterized genetic resources, developed modern tools for high-throughput screening, and published data in publicly available repositories.

View Article and Find Full Text PDF

Organic farming is characterized by the prohibition of the use of chemical synthetic fertilizers, pesticides, feed additives and genetically modified organisms and by the application of sustainable agricultural technologies based on ecological principles and natural rules. Organic products are believed to be more nutritious and safer foods compared to the conventional alternatives by consumers, with the consequent increase of demand and price of these foodstuffs. However, in academic circles there is much debate on these issues, since there is not a clear scientific evidence of the difference on the environmental impact and on the nutritional quality, safety and health effects between conventional and organic foods.

View Article and Find Full Text PDF

Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and fruit quality of four different flat peach cultivars, trained as Catalonian vase in 2017-2018 in Italy. Productive (average fruit weight, plant total production, and fruit circumference), qualitative (fruit firmness and overcolor, Soluble Solids Content, and Titratable Acidity), and nutritional (Total Antioxidant Capacity, and Total Phenol Content) parameters were evaluated.

View Article and Find Full Text PDF

Fungicide use is one of the core elements of intensive agriculture because it is necessary to fight pathogens that would otherwise cause large production losses. Oomycete and fungal pathogens are kept under control using several active compounds, some of which are predicted to be banned in the near future owing to serious concerns about their impact on the environment, non-targeted organisms, and human health. To avoid detrimental repercussions for food security, it is essential to develop new biomolecules that control existing and emerging pathogens but are innocuous to human health and the environment.

View Article and Find Full Text PDF

Plant architecture is central in determining crop yield. In the short-day species strawberry, a crop vegetatively propagated by daughter-plants produced by stolons, fruit yield is further dependent on the trade-off between sexual reproduction (fruits) and asexual reproduction (daughter-plants). Both are largely dependent on meristem identity, which establishes the development of branches, stolons and inflorescences.

View Article and Find Full Text PDF

Downy mildew caused by is one of the most devastating diseases of grapevine, attacking all green parts of the plant. The damage is severe when the infection at flowering stage is left uncontrolled. management consumes a significant amount of classical pesticides applied in vineyards, requiring efficient and environmentally safe disease management options.

View Article and Find Full Text PDF