In , the chromosome compaction factors topoisomerase 2 (TOP-2) and condensin II have been shown to globally repress transcription in multiple contexts. Our group has previously reported that TOP-2 and condensin II repress transcription in the germline during larval starvation, oocyte maturation, and in germline progenitor cells of the early embryo. Here, we assess the transcriptome of early embryos treated with RNAi against TOP-2 and the condensin II subunit CAPG-2.
View Article and Find Full Text PDFIn C. elegans, the germline is specified via a preformation mechanism that relies on the PIE-1 protein's ability to globally silence mRNA transcription in germline precursor cells, also known as the P lineage. Recent work from our group has identified additional genome silencing events in C.
View Article and Find Full Text PDFWhile it has been appreciated for decades that prophase-arrested oocytes are transcriptionally silenced on a global level, the molecular pathways that promote silencing have remained elusive. Previous work in C. elegans has shown that both topoisomerase II (TOP-2) and condensin II collaborate with the H3K9me heterochromatin pathway to silence gene expression in the germline during L1 starvation, and that the PIE-1 protein silences the genome in the P-lineage of early embryos.
View Article and Find Full Text PDFBackground: Clinical practitioners are influential figures in the public's health-seeking behavior. Therefore, understanding their attitudes toward the COVID-19 vaccine is critical for implementing successful vaccination programs. Our study aimed to investigate clinical practitioners' acceptance of the COVID-19 vaccine and associated factors for evidence-based interventions.
View Article and Find Full Text PDFWhile much is known about how transcription is controlled at individual genes, comparatively little is known about how cells regulate gene expression on a genome-wide level. Here, we identify a molecular pathway in the C. elegans germline that controls transcription globally in response to nutritional stress.
View Article and Find Full Text PDFKrüppel-like factor 4 (Human Protein: KLF4; Human Gene: Klf4; Murine Protein: KLF4; Murine Gene: Klf4) is a zinc finger-containing transcription factor with diverse regulatory functions. Mouse embryonic fibroblasts (MEFs) lacking Klf4 exhibit genomic instability, increased reactive oxygen species (ROS), and decreased autophagy. Elevated ROS is linked to impairments in mitochondrial damage recovery responses and is often tied to disruption in mitochondrial-targeted autophagy known as mitophagy.
View Article and Find Full Text PDFIn Caenorhabditis elegans, the primordial germ cells Z2 and Z3 are born during early embryogenesis and then held in a transcriptionally quiescent state where the genome is highly compacted. When hatched L1s feed, the germline genome decompacts, and RNAPII is abruptly and globally activated. A previously documented yet unexplained feature of germline genome activation in the worm is the appearance of numerous DNA breaks coincident with RNAPII transcription.
View Article and Find Full Text PDF