Publications by authors named "Mezei P"

Histiocytic sarcoma is an uncommon hematological malignancy. Its occurrence in the lung is very rare. Due to the small number of cases and the clinical and pathological features of the disease, the diagnosis can be challenging.

View Article and Find Full Text PDF

Introduction and objective: Hemothorax is an umbrella term for pathologies with an extremely wide range of etiology and severity. Most commonly it is of tramuatic origin, frequently iatrogenic (intervention, blood coagulation altering therapy) and rarely unknown. Depending on the cause, volume, and dynamics, it requires a patient-adapted treatment determined by access to certain therapeutical methods.

View Article and Find Full Text PDF

Article 5 of the 2019 EU Directive on Copyright in the Digital Single Market (CDSM) attempted to modernize the regime of copyright exceptions and limitations related to teaching activities. Its aim is to enhance the flexibility behind permitted uses to the benefit of educational institutions regarding their digital and cross-border teaching. The pressing need for such a legislative reform was confirmed by the outbreak of the COVID-19 pandemic, which dramatically moved teaching environments to online platforms.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes the impact of natural forest exploitation and protected areas on habitat networks across 16 regions worldwide.
  • Conservation effectiveness varies significantly, influenced by factors like habitat quality and resource extraction within protected zones, leading to a predominance of negative over positive effects.
  • Despite existing knowledge and tools, trends in biodiversity conservation appear to be declining, emphasizing the need for better segregation of conservation efforts and resource use.
View Article and Find Full Text PDF

We present noncovalent quantum machine learning corrections to six physically motivated density functionals with systematic errors. We demonstrate that the missing massively nonlocal and nonadditive physical effects can be recovered by quantum machine learning models. The models seamlessly account for various types of noncovalent interactions and enable accurate predictions of dissociation curves.

View Article and Find Full Text PDF

MRCC is a package of ab initio and density functional quantum chemistry programs for accurate electronic structure calculations. The suite has efficient implementations of both low- and high-level correlation methods, such as second-order Møller-Plesset (MP2), random-phase approximation (RPA), second-order algebraic-diagrammatic construction [ADC(2)], coupled-cluster (CC), configuration interaction (CI), and related techniques. It has a state-of-the-art CC singles and doubles with perturbative triples [CCSD(T)] code, and its specialties, the arbitrary-order iterative and perturbative CC methods developed by automated programming tools, enable achieving convergence with regard to the level of correlation.

View Article and Find Full Text PDF

Blending the good performance of the global hybrid PBE0 functional at short-range and the dual-hybrid dRPA75 functional at long range, we propose a new range-separated direct random phase approximation (dRPA75rs), which considerably improves on the accuracy of the calculated reaction energies and barrier heights compared to the parent approaches and provides a good description of noncovalent interactions without any dispersion correction. We also combine the new scheme with spin-component scaling (SCS-dRPA75rs), which enables the accurate calculation of energy differences for processes involving electron pair breaking, such as atomization. The new method scaling as the fourth power of the system size shows a balanced performance on a broad test set involving radicals, transition metal atoms, and heavy atoms, which makes it competitive with the best double-hybrid functionals based on the second-order perturbation theory.

View Article and Find Full Text PDF

Preserving the beneficial properties of the second-order screened exchange (SOSEX) method, such as its freedom from one-body self-correlation error, and its seamless treatment of long-range dispersion interaction, we construct new nonlocal functionals by down-scaling the higher-order terms in the SOSEX series to reduce the many-body self-correlation error in molecular systems. Our down-scaled SOSEX (dsSOSEX) and scaled equation SOSEX (seSOSEX) approaches deliver considerably more accurate noncovalent interaction energies, reaction energies, and barrier heights than the original SOSEX method. The dsSOSEX approach improves on the description of medium- and long-range correlation, for example, in isogyric processes, while the seSOSEX approach improves on the description of processes with short- and medium-range rearrangement in the electronic structure, such as atomization.

View Article and Find Full Text PDF

NR0B1 (nuclear receptor subfamily 0, group B, member 1) is a transcription factor encoded by DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1) responsible for the development and maintenance of the steroidogenic tissues. In humans the DAX1 mutations cause congenital adrenal hypoplasia (AHC) and hypogonadotropic hypogonadism (HHG) in boys. Here we report two brothers who were assessed by endocrinologist at the age of 51 and 43 because of their serious osteoporosis.

View Article and Find Full Text PDF

The definition of spontaneous haemothorax is accumulation of blood within the pleural space without trauma or iatrogenic causes. A case of a 17-year-old male patient with a history of multiple abnormal arterial fistulas between systemic circulation and pulmonary circulation as a cause of bleeding is presented. An overview of the causes, the clinical features of haemothorax and the interventional radiological methods that can solve some causes of haemothorax are presented in connection of our case report.

View Article and Find Full Text PDF

We analyzed various possibilities to improve upon the SCAN meta-generalized gradient approximation density functional obeying all known properties of the exact functional that can be satisfied at this level of approximation. We examined the necessity of locally satisfying a strongly tightened lower bound for the exchange energy density in single-orbital regions, the nature of the error cancellation between the exchange and correlation parts in two-electron regions, and the effect of the fourth-order term in the gradient expansion of the correlation energy density. We have concluded that the functional can be modified to separately reproduce the exchange and correlation energies of the helium atom by locally releasing the strongly tightened lower bound for the exchange energy density in single-orbital regions, but this leads to an unbalanced improvement in the single-orbital electron densities.

View Article and Find Full Text PDF

Since its formal introduction, density functional theory has achieved many successes in the fields of molecular and solid-state chemistry. According to its central theorems, the ground state of a many-electron system is fully described by its electron density, and the exact functional minimizes the energy at the exact electron density. For many years of density functional development, it was assumed that the improvements in the energy are accompanied by the improvements in the density, and the approximations approach the exact functional.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammatory fibroid polyp (IFP) is a rare, benign tumor found in the gastrointestinal tract, with esophageal occurrences being particularly unusual, especially in larger sizes.
  • A case study details a 63-year-old woman with a giant 13 × 7 × 4.5 cm polyp originating from the lower esophagus, which extended into the stomach.
  • The polyp was surgically removed through a right esophago-gastrotomy, and histological analysis confirmed it was an inflammatory fibroid polyp, providing insights into its clinical features.
View Article and Find Full Text PDF

Recently, we have constructed a dual-hybrid direct random phase approximation method, called dRPA75, and demonstrated its good performance on reaction energies, barrier heights, and noncovalent interactions of main-group elements. However, this method has also shown significant but quite systematic errors in the computed atomization energies. In this paper, we suggest a constrained spin-component scaling formalism for the dRPA75 method (SCS-dRPA75) in order to overcome the large error in the computed atomization energies, preserving the good performance of this method on spin-unpolarized systems at the same time.

View Article and Find Full Text PDF

Without extensive fitting, accurate prediction of transition metal chemistry is a challenge for semilocal and hybrid density funcitonals. The Random Phase Approximation (RPA) has been shown to yield superior results to semilocal functionals for main group thermochemistry, but much less is known about its performance for transition metals. We have therefore analyzed the behavior of reaction energies, barrier heights, and ligand dissociation energies obtained with RPA and compare our results to several semilocal and hybrid functionals.

View Article and Find Full Text PDF

In water clusters, there is a delicate balance of van der Waals interactions and hydrogen bonds. Although semilocal and nonlocal density functional approximations have been recently routinely applied to water in various phases, the accurate description of hydrogen bonds remains a challenge. The most popular density functional approaches fail to predict the correct ordering of the energies of water clusters.

View Article and Find Full Text PDF

We assess the performance of the semilocal PBE functional; its global hybrid variants; the highly parametrized empirical M06-2X and M08-SO; the range separated rCAM-B3LYP and MCY3; the atom-pairwise or nonlocal dispersion corrected semilocal PBE and TPSS; the dispersion corrected range-separated ωB97X-D; the dispersion corrected double hybrids such as PWPB95-D3; the direct random phase approximation, dRPA, with Hartree-Fock, Perdew-Burke-Ernzerhof, and Perdew-Burke-Ernzerhof hybrid reference orbitals and the RPAX2 method based on a Perdew-Burke-Ernzerhof exchange reference orbitals for the Diels-Alder, DARC; and self-interaction error sensitive, SIE11, reaction energy test sets with large, augmented correlation consistent valence basis sets. The dRPA energies for the DARC test set are extrapolated to the complete basis set limit. CCSD(T)/CBS energies were used as a reference.

View Article and Find Full Text PDF

The direct random phase approximation (dRPA) is a promising way to obtain improvements upon the standard semilocal density functional results in many aspects of computational chemistry. In this paper, we address the slow convergence of the calculated dRPA correlation energy with the increase of the quality and size of the popular Gaussian-type Dunning's correlation consistent aug-cc-pVXZ split valence atomic basis set family. The cardinal number X controls the size of the basis set, and we use X = 3-6 in this study.

View Article and Find Full Text PDF

The direct random phase approximation (dRPA) combined with Kohn-Sham reference orbitals is among the most promising tools in computational chemistry and applicable in many areas of chemistry and physics. The reason for this is that it scales as N(4) with the system size, which is a considerable advantage over the accurate ab initio wave function methods like standard coupled-cluster. dRPA also yields a considerably more accurate description of thermodynamic and electronic properties than standard density-functional theory methods.

View Article and Find Full Text PDF

A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values.

View Article and Find Full Text PDF

Eastern Palearctic conifers are subject to frequent bark beetle outbreaks. However, neither the species responsible nor the semiochemicals guiding these attacks are well understood. Two high-mountain Ips species on Qinghai spruce, Picea crassifolia, I.

View Article and Find Full Text PDF

Electrolyte Cathode Discharge (ELCAD) spectrometry, a novel sensitive multielement direct analytical method for metal traces in aqueous solutions, was introduced in 1993 as a new sensing principle. Since then several works have tried to develop an operational mechanism for this exotic atmospheric glow plasma technique, however these attempts cannot be combined into a valid model description. In this review we summarize the conceptual and technical problems we found in this upcoming research field of direct sensors.

View Article and Find Full Text PDF

Numerous methods exist for the treatment of pericardial effusions. These methods, however, can be applied with limitations only for long-term eradication of malignant pericardial effusion. Lately, several new methods, including minimally invasive procedures, have been published, and the VATS technique has become fairly popular.

View Article and Find Full Text PDF

A multi-element graphite furnace atomic absorption spectrometry (GFAAS) method was elaborated for the simultaneous determination of As, Cd, Cu, and Pb in wine samples of various sugar contents using the transversally heated graphite atomizer (THGA) with end-capped tubes and integrated graphite platforms (IGPs). For comparative GFAAS analyses, direct injection (i.e.

View Article and Find Full Text PDF

The effect of different matrix anions in the solution on the intensity of metal atomic lines was investigated. A significant increase in intensity was found for chloride anions compared with nitrate and sulfate anions. This effect was even greater when the appropriate acids were applied.

View Article and Find Full Text PDF