Front Endocrinol (Lausanne)
April 2023
Biol Aujourdhui
July 2022
The isolation of insulin from the pancreas and its purification to a degree permitting its safe administration to type 1 diabetic patients were accomplished 100 years ago at the University of Toronto by Banting, Best, Collip and McLeod and constitute undeniably one of the major medical therapeutic revolutions, recognized by the attribution of the 1923 Nobel Prize in Physiology or Medicine to Banting and McLeod. The clinical spin off was immediate as well as the internationalization of insulin's commercial production. The outcomes regarding basic research were much slower, in particular regarding the molecular mechanisms of insulin action on its target cells.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Diabetes has been known since antiquity. We present here a historical perspective on the concepts and ideas regarding the physiopathology of the disease, on the progressive focus on the pancreas, in particular on the islets discovered by Langerhans in 1869, leading to the iconic experiment of Minkowski and von Mering in 1889 showing that pancreatectomy in a dog induced polyuria and diabetes mellitus. Subsequently, multiple investigators searched for the active substance of the pancreas and some managed to produce extracts that lowered blood glucose and decreased polyuria in pancreatectomized dogs but were too toxic to be administered to patients.
View Article and Find Full Text PDFThe insulin/insulin-like growth factor signalling axis is an evolutionary ancient and highly conserved hormonal system involved in the regulation of metabolism, growth and lifespan in animals. Human insulin is stored in the pancreas, while insulin-like growth factor-1 (IGF-1) is maintained in blood in complexes with IGF-binding proteins (IGFBP1-6). Insect insulin-like polypeptide binding proteins (IBPs) have been considered as IGFBP-like structural and functional homologues.
View Article and Find Full Text PDFInsulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. IIS is propagated by eight insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes.
View Article and Find Full Text PDFHuman type 1 insulin-like growth factor receptor is a homodimeric receptor tyrosine kinase that signals into pathways directing normal cellular growth, differentiation and proliferation, with aberrant signalling implicated in cancer. Insulin-like growth factor binding is understood to relax conformational restraints within the homodimer, initiating transphosphorylation of the tyrosine kinase domains. However, no three-dimensional structures exist for the receptor ectodomain to inform atomic-level understanding of these events.
View Article and Find Full Text PDFViruses are the most abundant biological entities and carry a wide variety of genetic material, including the ability to encode host-like proteins. Here we show that viruses carry sequences with significant homology to several human peptide hormones including insulin, insulin-like growth factors (IGF)-1 and -2, FGF-19 and -21, endothelin-1, inhibin, adiponectin, and resistin. Among the strongest homologies were those for four viral insulin/IGF-1-like peptides (VILPs), each encoded by a different member of the family VILPs show up to 50% homology to human insulin/IGF-1, contain all critical cysteine residues, and are predicted to form similar 3D structures.
View Article and Find Full Text PDFIn the fruit fly , there are eight insulin-like peptides (DILPs) with DILPs 1-7 interacting with a sole insulin-like receptor tyrosine kinase (DInR) while DILP8 interacts with a single G protein-coupled receptor (GPCR), Lgr3. Loss-of-function mutation studies show that the neuropeptide DILP2 has a key role in carbohydrate and lipid metabolism as well as longevity and reproduction. A better understanding of the processes whereby DILP2 mediates its specific actions is required.
View Article and Find Full Text PDFEndocrinol Diabetes Metab Case Rep
November 2016
Unlabelled: Glucagon stimulates hepatic glucose production by activating specific glucagon receptors in the liver, which in turn increase hepatic glycogenolysis as well as gluconeogenesis and ureagenesis from amino acids. Conversely, glucagon secretion is regulated by concentrations of glucose and amino acids. Disruption of glucagon signaling in rodents results in grossly elevated circulating glucagon levels but no hypoglycemia.
View Article and Find Full Text PDFNat Struct Mol Biol
October 2016
Progress in solving the structure of insulin bound to its receptor has been slow and stepwise, but a milestone has now been reached with a refined structure of a complex of insulin with a "microreceptor" that contains the primary binding site. The insulin receptor is a dimeric allosteric enzyme that belongs to the family of receptor tyrosine kinases. The insulin binding process is complex and exhibits negative cooperativity.
View Article and Find Full Text PDFSkeletal muscle is the key site of peripheral insulin resistance in type 2 diabetes. Insulin-stimulated glucose uptake is decreased in differentiated diabetic cultured myotubes, which is in keeping with a retained genetic/epigenetic defect of insulin action. We investigated differences in gene expression during differentiation between diabetic and control muscle cell cultures.
View Article and Find Full Text PDFThe mechanisms whereby insulin analogues may cause enhanced mitogenicity through activation of either the IR (insulin receptor) or the IGF-IR (insulin-like growth factor 1 receptor) are incompletely understood. We demonstrate that in L6 myoblasts expressing only IGF-IRs as well as in the same cells overexpressing the IR, IGF-I (insulin-like growth factor 1), insulin and X10 (AspB10 insulin) down-regulate the mRNA expression level of the cell cycle inhibitor cyclin G2, as measured by qRT-PCR (quantitative reverse transcription-PCR), and induce cell growth measured by [6-(3)H]thymidine incorporation into DNA. Western blotting showed a marked down-regulation of cyclin G2 at the protein level in both cell lines.
View Article and Find Full Text PDFInsulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it.
View Article and Find Full Text PDFInsulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs).
View Article and Find Full Text PDFThe superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades, GPCR oligomerization has been extensively studied using methods like bioluminescence resonance energy transfer (BRET) and today, receptor-receptor interactions within the GPCR superfamily is a well-established phenomenon.
View Article and Find Full Text PDFMore than 20 years after the description of the two IR (insulin receptor) isoforms, designated IR-A (lacking exon 11) and IR-B (with exon 11), nearly every functional aspect of the alternative splicing both in vitro and in vivo remains controversial. In particular, there is no consensus on the precise ligand-binding properties of the isoforms. Increased affinity and dissociation kinetics have been reported for IR-A in comparison with IR-B, but the opposite results have also been reported.
View Article and Find Full Text PDFInsulin-like growth factor I (IGF-I) has important anabolic and homeostatic functions in tissues like skeletal muscle, and a decline in circulating levels is linked with catabolic conditions. Whereas IGF-I therapies for musculoskeletal disorders have been postulated, dosing issues and disruptions of the homeostasis have so far precluded clinical application. We have developed a novel IGF-I variant by site-specific addition of polyethylene glycol (PEG) to lysine 68 (PEG-IGF-I).
View Article and Find Full Text PDFObjective: While in previous studies heterozygosity for an Insulin-Like Growth Factor 1 (IGF1) defect only modestly decreased height and head circumference, we recently reported on two siblings with severe short stature with a maternally transmitted heterozygous duplication of 4 nucleotides, resulting in a frame shift and a premature termination codon in the IGF1 gene. In this paper we describe the structural and functional characteristics of the putative truncated IGF-I protein.
Design: Two children, their mother and maternal grandfather carried the mutation.