The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles.
View Article and Find Full Text PDFThe nanomechanical properties of carbon nanotubes particulate-reinforced aluminum matrix nanocomposites (Al-CNTs) have been characterized using nanoindentation. Bulk nanocomposite specimens containing 2 wt % multiwalled CNTs (MWCNTs) were synthesized by a combination of ball milling and powder metallurgy route. It has been tried to understand the correlation between microstructural evolution particularly carbon nanotubes (CNTs) dispersion during milling and mechanical properties of Al-2 wt % nanocomposites.
View Article and Find Full Text PDF