Publications by authors named "Meysam Soleymani"

In the current study, a combination of precipitation polymerization and modified sol-gel methods were developed to prepare the novel hyaluronic acid-decorated pH and redox dual-stimuli responsive poly(methacrylic acid)/mesoporous organosilica nanoparticles with a core-shell structure for controlled drug release. The nanocarriers have a proper particle size of <200 nm, high negative zeta potential greater than -30 mV, controllable diameter, and tunable shell thickness. The prepared nanoparticles were able to entrap over 70 % of quercetin with a drug loading of >10 %, due to the mesoporous shell.

View Article and Find Full Text PDF

Successful cancer treatment using magnetic hyperthermia therapy (MHT) strongly depends on biocompatible magnetic nanoparticles (NPs). They can effectively accumulate in tumor tissues after systemic injection and generate heat in the therapeutic temperature range (42-48 °C) by exposure to an AC magnetic field (AMF). For this purpose, folic acid-conjugated dextran-coated ZnMnFeO (FA-Dex-ZMF) NPs were synthesized as smart nano heaters with self-regulating temperatures for MHT of liver tumors.

View Article and Find Full Text PDF

Stimuli-responsive polymers have been of great interest in the fabrication of advanced drug delivery systems. In this study, a facile approach was developed to synthesize a dually temperature/pH-responsive drug delivery system with a core-shell structure to control the release of doxorubicin (DOX) at the target site. For this purpose, poly(acrylic acid) (PAA) nanospheres were first synthesized using the precipitation polymerization technique and were used as pH-responsive polymeric cores.

View Article and Find Full Text PDF

Most of the employed methods for preparation of targeted nanoparticles containing hydrophobic herbal drugs have multiple surface modifications with time-consuming steps. The present research was aimed to develop a facile method for preparation of hyaluronic acid (HA)-decorated mixed nanomicelles loaded with curcumin (as a hydrophobic drug model) to provide an efficient drug delivery system for targeted therapy of breast cancer cells with high expression of CD44 receptor. To this end, curcumin was first encapsulated in the hydrophobic core of Pluronic F127/didecyldimethylammonium bromide (PD) mixed nanomicelles using thin-film hydration method.

View Article and Find Full Text PDF

A precise control of the particle size of dextran-coated magnetite nanoparticles (Dex-M NPs) was successfully performed by combination of co-precipitation and hydrothermal synthesis methods. The Dex-M NPs, in the size range 3.1-18.

View Article and Find Full Text PDF

In the present study, a facile one-pot hydrothermal method is introduced for preparation of hyaluronic acid-coated FeO nanoparticles (FeO@HA NPs) for theranostic applications. In the proposed method, hyaluronic acid acts simultaneously as a biocompatible coating layer and as a targeting ligand for CD44 receptor overexpressed on the surface of breast cancer cells. The obtained product with narrow hydrodynamic size distribution exhibited a high colloidal stability at physiological pH for more than three months.

View Article and Find Full Text PDF

Folate-targeted iron oxide nanoparticles (FA@FeO NPs) were prepared by a one-pot hydrothermal method and then used as cancer theranostic agents by combining magnetic resonance imaging (MRI) and magnetic hyperthermia therapy (MHT). Crystal structure, morphology, magnetic properties, surface functional group, and heating efficacy of the synthesized nanoparticles were characterized by XRD, TEM, VSM, FTIR, and hyperthermia analyses. The results indicated that the crystal structure, magnetic properties, and heating efficacy of the magnetite nanoparticles were improved by hydrothermal treatment.

View Article and Find Full Text PDF

Listeria monocytogenes is an important foodborne pathogen which its data in Iranian dairy products is limited. A total of 545 samples of traditional dairy products (raw milk, traditional cheese, traditional butter, traditional curd, and traditional ice cream) were collected from traditional dairy shops located in Yazd, Iran. L.

View Article and Find Full Text PDF

Magnetic nanoparticles as heat-generating nanosources in hyperthermia treatment are still faced with many drawbacks for achieving sufficient clinical potential. In this context, increase in heating ability of magnetic nanoparticles in a biologically safe alternating magnetic field and also approach to a precise control on temperature rise are two challenging subjects so that a significant part of researchers' efforts has been devoted to them. Since a deep understanding of Physics concepts of heat generation by magnetic nanoparticles is essential to develop hyperthermia as a cancer treatment with non-adverse side effects, this review focuses on different mechanisms responsible for heat dissipation in a radio frequency magnetic field.

View Article and Find Full Text PDF

A careful design of LaSrMnO (0.25 ≤x≤ 0.35) nanoparticles (NPs) was made to prepare a self-controlled heating agent for magnetic hyperthermia therapy (MHT).

View Article and Find Full Text PDF

Biocompatible ferrofluids based on dextran coated iron oxide nanoparticles were fabricated by conventional co-precipitation method. The experimental results show that the presence of dextran in reaction medium not only causes to the appearance of superparamagnetic behavior but also results in significant suppression in saturation magnetization of dextran coated samples. These results can be attributed to size reduction originated from the role of dextran as a surfactant.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionidp0cj0vpm1sa6s4oa08liauihv5mkse): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once