The study aimed to determine the efficiency of advanced chelate compounds-based trace minerals (OTM) in laying hens. Laying hens (240, 32 weeks old) were assigned to one of the following five groups: NOTM (no added trace minerals), CONTM (standard mineral salts), and three experimental groups in which chelates were used to replace 33, 66, and 100% of mineral salts (OTM33, OTM66, and OTM100, respectively). Each treatment had six replicates with eight hens per replicate.
View Article and Find Full Text PDFQuantitative PCR (qPCR) is one of the most common techniques for quantification of nucleic acid molecules in biological and environmental samples. Although the methodology is perceived to be relatively simple, there are a number of steps and reagents that require optimization and validation to ensure reproducible data that accurately reflect the biological question(s) being posed. This review article describes and illustrates the critical pitfalls and sources of error in qPCR experiments, along with a rigorous, stepwise process to minimize variability, time, and cost in generating reproducible, publication quality data every time.
View Article and Find Full Text PDFBackground: Low biomass in the bacterial lung tissue microbiome utilizes quantitative PCR (qPCR) 16S bacterial assays at their limit of detection. New technology like droplet digital PCR (ddPCR) could allow for higher sensitivity and accuracy of quantification. These attributes are needed if specific bacteria within the bacterial lung tissue microbiome are to be evaluated as potential contributors to diseases such as chronic obstructive pulmonary disease (COPD).
View Article and Find Full Text PDFPurpose: The efficacy of chemotherapy is decreased due to over-expression of the drug transporter P-glycoprotein (P-gp). This study was conducted to determine the feasibility of down-regulating tumor P-gp levels with non-viral siRNA delivery in order to sensitize the tumors to drug therapy.
Methods: P-gp over-expressing MDA435/LCC6 MDR1 cells were used to establish xenografts in NOD-SCID mouse.
Multidrug resistance (MDR) is among the major mechanisms leading to failure in chemotherapy of cancer patients. The ATP-binding cassette proteins are major contributors to MDR, involved in the active efflux of xenobiotics out of cancer cells. Among them, P-glycoprotein (P-gp) is the most dominant protein involved in the efflux of drugs.
View Article and Find Full Text PDFBackground: Among the treatment options that have been developed for cancer, chemotherapy remains 1 of the leading clinical approaches. Chemotherapy can usually control tumor growth at the onset of disease, but its effectiveness becomes limited by the overexpression of transporter proteins responsible for drug efflux, leading to multidrug resistance (MDR). To overcome this obstacle, the authors explored the feasibility of down-regulating the main drug transporter, P-glycoprotein (P-gp), by using nonviral small interfering RNA (siRNA) delivery as means to enhance the accumulation of chemotherapeutic agents in drug-resistant cancer cells.
View Article and Find Full Text PDFEnabling gene expression in skin fibroblasts using safe, nonviral gene delivery has the potential to stimulate wound healing and aid in skin tissue engineering efforts. In this study, several lipid-substituted poly(L-Lysines) (PLL) were investigated for their ability to deliver a plasmid DNA (pEGFP) to human skin fibroblasts. While native and lipid-substituted PLLs showed complete complexation with pEGFP, polymers with higher lipid substitution were more resilient to dissociation after heparin treatment.
View Article and Find Full Text PDFPalmitic acid conjugates of poly-L-lysine (PLL-PA) were prepared, and their ability to deliver plasmid DNA into human skin fibroblasts was evaluated in vitro. The conjugates were capable of condensing a 4.7 kb plasmid DNA into 50-200 nm particles (mean +/- SD = 112 +/- 34 nm), which were slightly smaller than the particles formed by PLL (mean +/- SD = 126 +/- 51 nm).
View Article and Find Full Text PDF