Publications by authors named "Meyerson M"

Article Synopsis
  • Researchers tackled the challenge of studying structural variants (SVs) in repetitive genomic regions using advanced technologies like long-read sequencing and the gapless T2T assembly.
  • They successfully analyzed 13 complex cases, resolving 10 by identifying specific genomic breakpoints and structures that were previously difficult to sequence, including Robertsonian translocations and ring chromosomes.
  • The study highlighted new mechanisms for SV formation and provided insights into how these genome variations affect gene expression and potential implications for disease diagnosis and genome biology.
View Article and Find Full Text PDF

KAT6A and KAT6B genes are two closely related lysine acetyltransferases that transfer an acetyl group from acetyl coenzyme A (AcCoA) to lysine residues of target histone substrates, hence playing a key role in chromatin regulation. KAT6A and KAT6B genes are frequently amplified in various cancer types. In breast cancer, the 8p11-p12 amplicon occurs in 12-15% of cases, resulting in elevated copy numbers and expression levels of chromatin modifiers like KAT6A.

View Article and Find Full Text PDF

A subset of phosphodiesterase 3 (PDE3) inhibitors kills cancer cells that express both PDE3A and SLFN12 by inducing a protein-protein interaction between the two, triggering SLFN12 tRNase activity. Following discovery of the prototypical tool compound, , an improved compound, , was discovered to be potent in cells and active in several tumor models . More analogs were prepared and tested with the goal of increasing metabolic stability and decreasing PDE3 inhibition while maintaining the cellular activity of .

View Article and Find Full Text PDF
Article Synopsis
  • The article mentioned has been corrected to address errors or inaccuracies.
  • The correction is linked to the Digital Object Identifier (DOI) 10.1371/journal.pmed.0020313.
  • This ensures that readers have access to the most accurate information in the research.
View Article and Find Full Text PDF

High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy.

View Article and Find Full Text PDF

Background: Velcrins are molecular glues that kill cells by inducing the formation of a protein complex between the RNase SLFN12 and the phosphodiesterase PDE3A. Formation of the complex activates SLFN12, which cleaves tRNA(TAA) and induces apoptosis. Velcrins such as the clinical investigational compound, BAY 2666605, were found to have activity across multiple solid tumor cell lines from the cancer cell line encyclopedia, including glioblastoma cell lines.

View Article and Find Full Text PDF

CMTR2 is an mRNA cap methyltransferase with poorly understood physiological functions. It catalyzes 2'-O-ribose methylation of the second transcribed nucleotide of mRNAs, potentially serving to mark RNAs as "self" to evade the cellular innate immune response. Here we analyze the consequences of Cmtr2 deficiency in mice.

View Article and Find Full Text PDF
Article Synopsis
  • A study conducted at Dana-Farber/Boston Children's Cancer and Blood Disorders Center focused on classifying pediatric solid tumor diagnoses and analyzing genomic mutations to improve clinical trial design and treatment options.
  • Over 6.5 years, the research included 888 pediatric cancer patients, revealing that 33% had genomic variants that aligned with precision oncology trials, while 14% received targeted therapies.
  • The findings stress the significance of using genomic data for enhancing treatment strategies and the necessity for data sharing, particularly for addressing rare pediatric cancers in clinical settings.
View Article and Find Full Text PDF

Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats.

View Article and Find Full Text PDF

Delays and risks associated with neurosurgical biopsies preclude timely diagnosis and treatment of central nervous system (CNS) lymphoma and other CNS neoplasms. We prospectively integrated targeted rapid genotyping of cerebrospinal fluid (CSF) into the evaluation of 70 patients with CNS lesions of unknown cause. Participants underwent genotyping of CSF-derived DNA using a quantitative polymerase chain reaction-based approach for parallel detection of single-nucleotide variants in the MYD88, TERT promoter, IDH1, IDH2, BRAF, and H3F3A genes within 80 minutes of sample acquisition.

View Article and Find Full Text PDF
Article Synopsis
  • Hemangiosarcoma in dogs and angiosarcoma in humans are aggressive sarcomas originating from blood vessel-forming cells, characterized by disorganized vascular spaces and high metastasis rates.
  • The study used dog-in-mouse xenografts to mimic the tumors' properties, observing the complex interaction between donor and host cells, which led to the development of myeloid hyperplasia and lymphoproliferative tumors.
  • Findings suggest that these sarcomas create a supportive microenvironment for hematopoietic (blood cell) growth, indicating a potential role in tumor progression by regulating surrounding stromal and immune responses.
View Article and Find Full Text PDF
Article Synopsis
  • * Scanning electrochemical microscopy revealed that silicon's electrical passivation diminishes over time and with increasing voltage, indicating a tendency for global SEI failure rather than localized damage.
  • * Delithiation at lower potentials (≤0.75 V vs Li/Li) helps maintain better passivation of silicon, suggesting that optimizing voltage conditions is crucial for improving the longevity of silicon-based battery cells.
View Article and Find Full Text PDF

The epidermal growth factor receptor, EGFR, is frequently activated in lung cancer and glioblastoma by genomic alterations including missense mutations. The different mutation spectra in these diseases are reflected in divergent responses to EGFR inhibition: significant patient benefit in lung cancer, but limited in glioblastoma. Here, we report a comprehensive mutational analysis of EGFR function.

View Article and Find Full Text PDF

Purpose: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known.

Experimental Design: Dana-Farber and Foundation Medicine Inc.

View Article and Find Full Text PDF

Emerging data suggest that induction of viral mimicry responses through activation of double-stranded RNA (dsRNA) sensors in cancer cells is a promising therapeutic strategy. One approach to induce viral mimicry is to target molecular regulators of dsRNA sensing pathways. Here, we show that the exoribonuclease XRN1 is a negative regulator of the dsRNA sensor protein kinase R (PKR) in cancer cells with high interferon-stimulated gene expression.

View Article and Find Full Text PDF

Alterations in the structure and location of telomeres are key events in cancer genome evolution. However, previous genomic approaches, unable to span long telomeric repeat arrays, could not characterize the nature of these alterations. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines.

View Article and Find Full Text PDF

Amplified oncogene expression is a critical and widespread driver event in cancer, yet our understanding of how amplification-mediated elevated dosage mediates oncogenic regulation is limited. Here, we find that the most significant focal amplification event in lung adenocarcinoma (LUAD) targets a lineage super-enhancer near the lineage transcription factor. The super-enhancer is targeted by focal and co-amplification with , and activation or repression controls expression.

View Article and Find Full Text PDF

The aberrant localization of proteins in cells is a key factor in the development of various diseases, including cancer and neurodegenerative disease. To better understand and potentially manipulate protein localization for therapeutic purposes, we engineered bifunctional compounds that bind to proteins in separate cellular compartments. We show these compounds induce nuclear import of cytosolic cargoes, using nuclear-localized BRD4 as a "carrier" for co-import and nuclear trapping of cytosolic proteins.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes genomic data from 1,039 patients with HER2-negative metastatic breast cancer to compare HER2-low and HER2-0 tumors.
  • There is a significant difference in ERBB2 allele copy counts, with HER2-low tumors having a median of 2.05 compared to 1.79 in HER2-0 tumors, and HER2-0 tumors showing a higher rate of ERBB2 hemideletions (31.1% vs. 14.5%).
  • Overall, aside from these differences, the genomic characteristics and tumor mutational burden are similar between HER2-low and HER2-0 tumors.
View Article and Find Full Text PDF

Although subsets of patients with lung squamous cell carcinoma (LSCC) benefit from immunotherapy, there are few effective molecularly targeted treatments for LSCC. Fibroblast growth factor receptor (FGFR) inhibitors provide a therapeutic option for patients with LSCC harboring FGFR aberrations, but their therapeutic efficacy has been limited to date. In this issue of the JCI, Malchers et al.

View Article and Find Full Text PDF

We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales.

View Article and Find Full Text PDF