The extra hepatic delivery of antisense oligonucleotides (ASOs) remains a challenge and hampers the widespread application of this powerful class of therapeutic agents. In that regard, pancreatic beta cells are a particularly attractive but challenging cell type because of their pivotal role in diabetes and the fact that they are refractory to uptake of unconjugated ASOs. To circumvent this, we have expanded our understanding of the structure activity relationship of ASOs conjugated to Glucagon Like Peptide 1 Receptor (GLP1R) agonist peptide ligands.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSC) offer the possibility to generate diverse disease-relevant cell types, from any genetic background with the use of cellular reprogramming and directed differentiation. This provides a powerful platform for disease modeling, drug screening and cell therapeutics. The critical question is how the differentiated iPSC-derived cells translate to their primary counterparts.
View Article and Find Full Text PDFAlzheimer's disease (AD), the leading cause of dementia, is a chronic neurodegenerative disease. Apolipoprotein E (apoE), which carries lipids in the brain in the form of lipoproteins, plays an undisputed role in AD pathophysiology. A high-throughput phenotypic screen was conducted using a CCF-STTG1 human astrocytoma cell line to identify small molecules that could upregulate apoE secretion.
View Article and Find Full Text PDFProinsulin C-peptide has previously been proposed to interact with a G-protein coupled receptor (GPCR), specifically the orphan receptor GPR146. To investigate the potential of C-peptide in treating complications of diabetes, such as kidney damage, it is necessary to understand its mode of action. We used CHO-K1 cells expressing human GPR146 to study human and murine C-peptide in dynamic mass redistribution and GPCR β-arrestin assays, as well as with fluorescence confocal microscopy.
View Article and Find Full Text PDF5-Lipoxygenase (5-LO)-activating protein (FLAP) inhibitors have proven to attenuate 5-LO pathway activity and leukotriene production in human clinical trials. However, previous clinical candidates have been discontinued and the link between FLAP inhibition and outcome in inflammatory diseases remains to be established. We here describe a novel series of FLAP inhibitors identified from a screen of 10k compounds and the medicinal chemistry strategies undertaken to progress this series.
View Article and Find Full Text PDFAntisense oligonucleotide (ASO) silencing of the expression of disease-associated genes is an attractive novel therapeutic approach, but treatments are limited by the ability to deliver ASOs to cells and tissues. Following systemic administration, ASOs preferentially accumulate in liver and kidney. Among the cell types refractory to ASO uptake is the pancreatic insulin-secreting β-cell.
View Article and Find Full Text PDFA synthetic protocol for S-labeled phosphorothioate oligonucleotides (PS ONs) was developed to facilitate MS-based assay analysis. This was enabled by a highly efficient, two-step, one-pot synthesis of S-labeled phenylacetyl disulfide ( S-PADS), starting from S-enriched elemental sulfur ( S ). S-PADS was subsequently used for stable isotope labeling (SIL) of oligonucleotides containing a phosphorothioate backbone.
View Article and Find Full Text PDFapoE is the primary lipid carrier within the CNS and the strongest genetic risk factor for late onset Alzheimer's disease (AD). apoE is primarily lipidated via ABCA1, and both are under transcriptional regulation by the nuclear liver X receptor (LXR). Considerable evidence from genetic (using ABCA1 overexpression) and pharmacological (using synthetic LXR agonists) studies in AD mouse models suggests that increased levels of lipidated apoE can improve cognitive performance and, in some strains, can reduce amyloid burden.
View Article and Find Full Text PDFScoring potency is a main challenge for structure based drug design. Inductive effects of subtle variations in the ligand are not possible to accurately predict by classical computational chemistry methods. In this study, the problem of predicting potency of ligands with electronic variations participating in key interactions with the protein was addressed.
View Article and Find Full Text PDFIn this work, we describe a process for production of a Pichia pastoris strain which overproduces large quantities of the human glycine receptor. Subsequent purification yielded functional, uniform protein with expression yields of up to 5 mg per liter cell culture. As the wild-type protein is prone to proteolytic degradation, the labile sites were removed by mutagenesis resulting in an intracellular loop 2 deletion mutant with N-terminal modifications.
View Article and Find Full Text PDFBackground: The dominantly inherited condition familial adenomatous polyposis (FAP) is caused by germline mutations in the APC gene. Finding the causative mutations has great implications for the families. Correlating the genotypes to the phenotypes could help to improve the diagnosis and follow-up of patients.
View Article and Find Full Text PDFSchwannomas of the penis are extremely rare. A 69-year-old man presented with a circumscribed asymptomatic tumor on the dorsum of the glans penis. Histopathologic examination of the surgical specimen showed a benign schwannoma.
View Article and Find Full Text PDFDrug efflux proteins are widespread amongst microorganisms, including pathogens. They can contribute to both natural insensitivity to antibiotics and to emerging antibiotic resistance and so are potential targets for the development of new antibacterial drugs. The design of such drugs would be greatly facilitated by knowledge of the structures of these transport proteins, which are poorly understood, because of the difficulties of obtaining crystals of quality.
View Article and Find Full Text PDFA general strategy for the expression of bacterial membrane transport and receptor genes in Escherichia coli is described. Expression is amplified so that the encoded proteins comprise 5-35% of E. coli inner membrane protein.
View Article and Find Full Text PDFLarge deletions in the APC (adenomatous polyposis coli) gene, causing familial adenomatous polyposis (FAP), cannot easily be detected by conventional mutation-detection techniques. Therefore, we have developed two independent quantitative methods for the detection of large deletions, encompassing one or more exons, of APC. Multiplex ligation-dependent probe amplification (MLPA) is performed in one reaction for the initial quantification of all APC exon copy numbers.
View Article and Find Full Text PDFA general strategy for the amplified expression in Escherichia coli of membrane transport and receptor proteins from other bacteria is described. As an illustration we report the cloning of the putative alpha-ketoglutarate membrane transport gene from the genome of Helicobacter pylori, overexpression of the protein tagged with RGS(His)6 at the C-terminus, and its purification in mg quantities. The retention of structural and functional integrity was verified by circular dichroism spectroscopy and reconstitution of transport activity.
View Article and Find Full Text PDFThe adenomatous polyposis coli (APC) tumor suppressor is a nucleocytoplasmic protein. The nuclear accumulation of APC was recently found to vary depending on cell density, suggesting that putative APC function(s) in the nucleus is controlled by the establishment of cell contacts. We report here that the density-dependent redistribution of APC between nucleus and cytoplasm prevails in 6/6 thyroid and colorectal carcinoma cell lines.
View Article and Find Full Text PDFProton-translocating nicotinamide nucleotide transhydrogenase from Escherichia coli is composed of an alpha and a beta subunit, whereas the homologues mitochondrial enzyme contains a single polypeptide. As compared to the latter transhydrogenase, using a 14-helix model for its membrane topology, the point of fusion is between the transmembrane helices 4 and 6 where the fusion linker provides the extra transmembrane helix 5. In order to clarify the potential role of this extra helix/linker, the alpha and the beta subunits were fused using three connecting peptides of different lengths, one (pAX9) involving essentially a direct coupling, a second (pKM) with a linking peptide of 18 residues, and a third (pKMII) with a linking peptide of 32 residues, as compared to the mitochondrial extra peptide of 27 residues.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2000
Proton-pumping nicotinamide nucleotide transhydrogenases are composed of three main domains, the NAD(H)-binding and NADP(H)-binding hydrophilic domains I (dI) and III (dIII), respectively, and the hydrophobic domain II (dII) containing the assumed proton channel. dII in the Escherichia coli enzyme has recently been characterised with regard to topology and a packing model of the helix bundle in dII is proposed. Extensive mutagenesis of conserved charged residues of this domain showed that important residues are betaHis91 and betaAsn222.
View Article and Find Full Text PDFTranshydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP(+) to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively.
View Article and Find Full Text PDFThe membrane topology of proton-pumping nicotinamide-nucleotide transhydrogenase from Escherichia coli was determined by site-specific chemical labeling. A His-tagged cysteine-free transhydrogenase was used to introduce unique cysteines in positions corresponding to potential membrane loops. The cysteines were reacted with fluorescent reagents, fluorescein 5-maleimide or 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid, in both intact cells and inside-out vesicles.
View Article and Find Full Text PDFConformational changes in proton pumping transhydrogenases have been suggested to be dependent on binding of NADP(H) and the redox state of this substrate. Based on a detailed amino acid sequence analysis, it is argued that a classical betaalphabetaalphabeta dinucleotide binding fold is responsible for binding NADP(H). A model defining betaA, alphaB, betaB, betaD, and betaE of this domain is presented.
View Article and Find Full Text PDFNicotinamide nucleotide transhydrogenase constitutes a proton pump which links the NAD(H) and NADP(H) pools in the cell by catalyzing a reversible reduction of NADP+ by NADH. The recent cloning and characterization of several proton-pumping transhydrogenases show that they share a number of features. They are composed of three domains, i.
View Article and Find Full Text PDFThe pyridine nucleotide transhydrogenase of Escherichiacoli is a proton pump composed of two subunits (alpha and beta) organized as an alpha2beta2 tetramer. The enzyme contains seven cysteine residues, five in the alpha-subunit and two in the beta-subunit. The reaction of these residues with the cross-linking agent cupric 1, 10-phenanthrolinate and with the fluorescent thiol reagent N-(1-pyrenyl)maleimide was investigated in mutants in which one or more of these cysteine residues had been mutated to serine or threonine residues.
View Article and Find Full Text PDFNicotinamide nucleotide transhydrogenase from Escherichia coli was investigated with respect to the roles of its cysteine residues. This enzyme contains seven cysteines, of which five are located in the alpha subunit and two are in the beta subunit. All cysteines were replaced by site-directed mutagenesis.
View Article and Find Full Text PDF