Publications by authors named "Metten P"

Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach.

View Article and Find Full Text PDF

Alcohol withdrawal is a clinically important consequence and potential driver of Alcohol Use Disorder. However, susceptibility to withdrawal symptoms, ranging from craving and anxiety to seizures and delirium, varies greatly. Selectively bred Withdrawal Seizure-Prone (WSP) and Seizure-Resistant (WSR) mice are an animal model of differential susceptibility to withdrawal and phenotypes with which withdrawal severity correlates.

View Article and Find Full Text PDF

The high-drinking-in-the-dark (HDID) lines of mice were selectively bred for achieving high blood alcohol levels in the drinking-in-the-dark (DID) task and have served as a unique genetic risk model for binge-like alcohol intake. However, little is known about their willingness to consume other addictive drugs. Here, we examined (a) whether the HDID-1 and HDID-2 lines of mice would voluntarily consume midazolam, methamphetamine, morphine and nicotine in a DID test and (b) whether the HDID lines differ from their founders, heterogeneous stock/Northport (HS/NPT), in consumption levels of these drugs at the concentrations tested.

View Article and Find Full Text PDF

We have modelled genetic risk for binge-like drinking by selectively breeding High Drinking in the Dark-1 and -2 (HDID-1 and HDID-2) mice for their propensity to reach intoxicating blood alcohol levels (BALs) after binge-like drinking in a single bottle, limited access paradigm. Interestingly, in standard two-bottle choice (2BC) tests for continuously available alcohol versus water, HDID mice show modest levels of preference. This indicates some degree of independence of the genetic contributions to risk for binge-like and sustained, continuous access drinking.

View Article and Find Full Text PDF

Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay.

View Article and Find Full Text PDF

The High Drinking in the Dark mouse lines (HDID-1 and HDID-2) were selectively bred to achieve high blood ethanol concentrations (BECs) in the Drinking in the Dark (DID) task, a widely used model of binge-like intake of 20% ethanol. There are several components that differentiate DID from other animal models of ethanol intake: time of day of testing, length of ethanol access, single-bottle access, and individual housing. Here, we sought to determine how some of these individual factors contribute to the high ethanol intake observed in HDID mice.

View Article and Find Full Text PDF
Article Synopsis
  • HDID-1 mice are a unique genetic model used to study binge-like drinking and to test potential treatments for alcohol use disorders.
  • Researchers tested several drugs (tacrolimus, sirolimus, PEA, and secukinumab) to see how they affected binge drinking and blood alcohol levels in these mice.
  • Tacrolimus was found to reduce both ethanol consumption and blood alcohol levels, while the other drugs had no significant effects.
View Article and Find Full Text PDF

Alcohol use disorders (AUDs) are prevalent, and are characterized by binge-like drinking, defined by patterns of focused drinking where dosages ingested in 2-4 ​h reach intoxicating blood alcohol levels (BALs). Current medications are few and compliance with the relatively rare prescribed usage is low. Hence, novel and more effective medications are needed.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic alcohol exposure can change how glucocorticoid receptors (GR) function in certain brain areas, leading to increased binge drinking problems, particularly in specially bred mice that tend to consume more alcohol.
  • In experiments, blocking GR with specific compounds led to a significant decrease in binge drinking and blood alcohol concentrations (BECs) in HDID-1 mice, but did not affect consumption in HS/NPT mice, indicating potential differences in GR sensitivity due to selective breeding.
  • Despite finding that GR antagonism did not intensify the aversive reactions to alcohol in conditioned taste or place aversion tests, the results highlight the complex relationship between GR function and alcohol intake behaviors, warranting further investigation into selective
View Article and Find Full Text PDF

Background: Rodent models of high alcohol drinking offer opportunities to better understand factors for alcohol use disorders (AUD) and test potential treatments. Selective breeding was carried out to create 2 unique High Drinking in the Dark (HDID-1, HDID-2) mouse lines that represent models of genetic risk for binge-like drinking. A number of studies have indicated that neuroimmune genes are important for regulation of alcohol drinking.

View Article and Find Full Text PDF

Two independent lines of High Drinking in the Dark (HDID-1, HDID-2) mice have been bred to reach high blood alcohol levels after a short period of binge-like ethanol drinking. Male mice of both lines were shown to have reduced sensitivity to develop a taste aversion to a novel flavor conditioned by ethanol injections as compared with their unselected HS/NPT founder stock. We have subsequently developed inbred variants of each line.

View Article and Find Full Text PDF

Background: Transcriptional differences between heterogeneous stock mice and high drinking-in-the-dark selected mouse lines have previously been described based on microarray technology coupled with network-based analysis. The network changes were reproducible in 2 independent selections and largely confined to 2 distinct network modules; in contrast, differential expression appeared more specific to each selected line. This study extends these results by utilizing RNA-Seq technology, allowing evaluation of the relationship between genetic risk and transcription of noncoding RNA (ncRNA); we additionally evaluate sex-specific transcriptional effects of selection.

View Article and Find Full Text PDF

Despite acceptance that risk for alcohol-use disorder (AUD) has a large genetic component, the identification of genes underlying various components of risk for AUD has been hampered in humans, in part by the heterogeneity of expression of the phenotype. One aspect of AUD is physical dependence. Alcohol withdrawal is a serious consequence of alcohol dependence with multiple symptoms, many of which are seen in multiple species, and can be experienced over a wide-ranging time course.

View Article and Find Full Text PDF

Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark (HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a molecular signature for genetic risk for high intensity, binge-like drinking.

View Article and Find Full Text PDF

Background: There is a serious public health need for better understanding of alcohol use disorder disease mechanisms and for improved treatments. At this writing, only three drugs are approved by the Food and Drug Administration as medications to treat alcohol use disorders - disulfiram, naltrexone, and acamprosate. Binge drinking is a form of abusive alcohol drinking defined by the NIAAA as a drinking to blood alcohol levels (BALs)>0.

View Article and Find Full Text PDF

Among animals at risk for excessive ethanol consumption such as the HDID selected mouse lines, there is considerable individual variation in the amount of ethanol consumed and the associated blood ethanol concentrations (BECs). For the HDID lines, this variation occurs even though the residual genetic variation associated with the DID phenotype has been largely exhausted and thus is most likely associated with epigenetic factors. Here we focus on the question of whether the genes associated with individual variation in HDID-1 mice are different from those associated with selection (risk) (Iancu et al.

View Article and Find Full Text PDF

The comorbidity of substance- and alcohol-use disorders (AUD) with other psychiatric conditions, especially those related to stress such as post-traumatic stress disorder (PTSD), is well-established. Binge-like intoxication is thought to be a crucial stage in the development of the chronic relapsing nature of the addictions, and self-medication through binge-like drinking is commonly seen in PTSD patients. We have selectively bred two separate High Drinking in the Dark (HDID-1 and HDID-2) mouse lines to reach high blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol starting shortly after the onset of circadian dark.

View Article and Find Full Text PDF

Withdrawal after chronic ethanol (EtOH) affects body temperature, goal-directed behavior and motor function in mice and increases general central nervous system excitability. Nest-building tests have been used to assay these states but to this point have not been employed as measures of EtOH withdrawal severity. We first refined nest-scoring methods using a genetically heterogeneous stock of mice (HS/Npt).

View Article and Find Full Text PDF

Background: Data from C57BL/6J (B6) × DBA/2J (D2) F2 intercrosses (B6xD2 F2 ), standard and recombinant inbred strains, and heterogeneous stock mice indicate that a reciprocal (or inverse) genetic relationship exists between alcohol consumption and withdrawal severity. Furthermore, some genetic studies have detected reciprocal quantitative trait loci (QTLs) for these traits. We used a novel mouse model developed by simultaneous selection for both high alcohol consumption/low withdrawal and low alcohol consumption/high withdrawal and analyzed the gene expression and genome-wide genotypic differences.

View Article and Find Full Text PDF

Extensive genetic and genomic studies of the relationship between alcohol drinking preference and withdrawal severity have been performed using animal models. Data from multiple such publications and public data resources have been incorporated in the GeneWeaver database with >60,000 gene sets including 285 alcohol withdrawal and preference-related gene sets. Among these are evidence for positional candidates regulating these behaviors in overlapping quantitative trait loci (QTL) mapped in distinct mouse populations.

View Article and Find Full Text PDF

Background: Initial sensitivity to ethanol (EtOH) and the capacity to develop acute functional tolerance (AFT) to its adverse effects may influence the amount of alcohol consumed and may also predict future alcohol use patterns. The current study assessed sensitivity and AFT to the ataxic and hypnotic effects of EtOH in the first replicate of mice (HDID-1) selectively bred for high blood EtOH concentrations (BECs) following limited access to EtOH in the Drinking in the Dark (DID) paradigm.

Methods: Naïve male and female HDID-1 and HS/Npt mice from the progenitor stock were evaluated in 3 separate experiments.

View Article and Find Full Text PDF

Drinking in the dark (DID) is a limited access ethanol-drinking phenotype in mice. High Drinking in the Dark (HDID-1) mice have been bred for 27 selected generations (S27) for elevated blood ethanol concentrations (BECs) after a 4-h period of access to 20% ethanol. A second replicate line (HDID-2) was started later from the same founder population and is currently in S20.

View Article and Find Full Text PDF

Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) mouse lines were bidirectionally selectively bred, respectively, to have severe or mild ethanol withdrawal handling-induced convulsions (HICs) after cessation of 3 days of ethanol vapor inhalation. Murine genotypes with severe withdrawal have been found to show low ethanol consumption, and high consumers show low withdrawal. An early drinking study with WSP and WSR mice showed modest evidence consistent with this genetic correlation, but there were several limitations to that experiment.

View Article and Find Full Text PDF

Background: Heterogeneous stock (HS/NPT) mice have been used to create lines selectively bred in replicate for elevated drinking in the dark (DID). Both selected lines routinely reach a blood ethanol (EtOH) concentration (BEC) of 1.00 mg/ml or greater at the end of the 4-hour period of access in Day 2.

View Article and Find Full Text PDF

Individual mice differ in the dose of ethanol they will ingest voluntarily when it is offered during limited access periods in the circadian dark, a phenotype called drinking in the dark (DID). Substantial genetic variation in DID has been reported across a few standard inbred mouse strains, and a line of High Drinking in the Dark (HDID) mice has been established through selective breeding on the blood ethanol concentration (BEC) they attain at the end of a drinking session. Here, we report ethanol DID data for 23 inbred mouse strains, including 11 not previously reported, corroborating the genetic contributions to this trait.

View Article and Find Full Text PDF