Type 1 diabetes mellitus (T1DM) is a chronic disease affecting millions worldwide. Insulin therapy is currently the golden standard for treating T1DM; however, it does not restore the normal glycaemic balance entirely, which increases the risk of secondary complications. Beta-cell therapy may be a possible way of curing T1DM and has already shown promising results in the clinic.
View Article and Find Full Text PDFDiabetes is a prevalent chronic disease affecting millions of people globally. To address this health challenge, advanced beta cell therapy using biomaterials-based macroscale, microscale, and nanoscale encapsulation devices must tackle various obstacles. First, overcoming foreign body responses is a major focus of research.
View Article and Find Full Text PDFDiabetes is a serious chronic disease, which globally affects more than 400 million patients. Beta cell therapy has potential to serve as an effective cure to type 1 diabetes and several studies have already shown promising results in this regard. One of the major obstacles in cell therapy, however, is the hypoxic environment that therapeutic cells are subjected to immediately after the transplantation.
View Article and Find Full Text PDFIn bone tissue engineering, electrospun fibrous scaffolds can provide excellent mechanical support, extracellular matrix mimicking components, such as 3D spacial fibrous environment for cell growth and controlled release of signaling molecules for osteogenesis. Here, a facile strategy comprising the incorporation of an osteogenic inductive peptide H1, derived from the cysteine knot (CT) domain of connective tissue growth factor (CTGF), in the core of Silk Fibroin (SF) was developed for osteogenic induction, synergistically with co-delivering hydroxyapatite (HA) from the shell of poly(l-lactic acid-co-ε-caprolactone) (PLCL). The core-shell nanofibrous structure was confirmed by transmission electron microscopy (TEM).
View Article and Find Full Text PDF