Background: Cheese ripening is a complex, time consuming and expensive process, which involves the generation of precursors from carbohydrates, proteins and fats and their subsequent conversion into a wide range of compounds responsible for the flavour and texture of the cheese. This study aims to investigate production of cheese aroma compounds outside the cheese matrix that could be applied for instance as food supplements in dairy or non-dairy products.
Results: In this study, aroma formation by a dairy Lactococcus lactis was analysed as a function of the growth medium [milk, hydrolysed micellar casein isolate (MCI) and chemically defined medium (CDM)] and the cultivation conditions (batch culture, retentostat culture and a milli-cheese model system).
We have used vibrating tube densitometry to investigate the packing properties of four alkanes and a homologous series of ten alcohols in fluid-phase membranes of dimyristoyl phosphatidylcholine (DMPC). It was found that the volume change of transferring these compounds from their pure states into the membrane, DeltaV(m)(pure-->mem), was positive for small (C4-C6) 1-alkanols while it was negative for larger alcohols and all alkanes. The magnitude of DeltaV(m)(pure-->mem) ranged from about +4 cm3/mol for alcohols with an alkyl chain about half the length of the fatty acids of DMPC, to -10 to -15 cm3/mol for the alkanes and long chain alcohols.
View Article and Find Full Text PDF