Publications by authors named "Mette Klitgaard"

The mucus layer in the small intestine is generally regarded as a barrier to drug absorption. However, the mucus layer is a complex system, and presently, only a few studies have been conducted to elucidate its physicochemical properties. The current study hypothesizes that the mucus layer contains solubility-enhancing surfactants and thus might aid the oral absorption of poorly water-soluble drugs.

View Article and Find Full Text PDF

Dextran sulfate sodium (DSS) is commonly used to induce colitis in rats. While the DSS-induced colitis rat model can be used to test new oral drug formulations for the treatment of inflammatory bowel disease, the effect of the DSS treatment on the gastrointestinal tract has not been thoroughly characterized. Additionally, the use of different markers to assess and confirm successful induction of colitis is somewhat inconsistent.

View Article and Find Full Text PDF

The aim of this study was to design an in vitro lipolysis-permeation method to estimate drug absorption following the oral administration of self-nanoemulsifying drug delivery systems (SNEDDSs). The method was evaluated by testing five oral formulations containing cinnarizine (four SNEDDSs and one aqueous suspension) from a previously published pharmacokinetic study in rats. In that study, the pharmacokinetic profiles of the five formulations did not correlate with the drug solubilization profiles obtained during in vitro intestinal lipolysis.

View Article and Find Full Text PDF

The prediction of the in vivo performance of self-nanoemulsifying drug delivery systems (SNEDDSs) is currently gaining increasing attention. Therefore, the need for reliable in vitro models able to assess the drug solubilization capacity of such formulations upon in vitro lipolysis, as well as to concomitantly evaluate in vitro drug permeation, has become ever so evident. In the current study, the high-throughput in vitro intestinal lipolysis model was combined with the mucus-PVPA in vitro permeation model to study the solubilization capacity of SNEDDSs for the poorly water-soluble drug fenofibrate and to study the consequent drug permeation.

View Article and Find Full Text PDF

The aim of this work was to develop a new in vitro lipolysis-permeation model to predict the in vivo absorption of fenofibrate in self-nanoemulsifying drug delivery systems (SNEDDSs). More specifically, the in vitro intestinal lipolysis model was combined with the mucus-PVPA (Phospholipid Vesicle-based Permeation Assay) in vitro permeability model. Biosimilar mucus (BM) was added to the surface of the PVPA barriers to closer simulate the intestinal mucosa.

View Article and Find Full Text PDF

Drug release from a lipid-based drug delivery system (LbDDS) is typically studied using a one-step intestinal digestion model. However, lately the importance of incorporating gastric digestion has been stressed. The aim of the present study was to compare a two-step gastro-intestinal (GI) digestion model to the commonly used one-step intestinal digestion model.

View Article and Find Full Text PDF

During the past two decades, a range of in vitro models simulating the digestion processes occurring in the stomach and small intestine have been developed to characterize lipid based drug delivery systems (LbDDSs). This review describes the presently existing range of in vitro digestion models and their use in the field of oral drug delivery. The models are evaluated in terms of their suitability to assess LbDDSs, and their ability to produce in vitro - in vivo correlations (IVIVCs).

View Article and Find Full Text PDF

Intestinal drug absorption following oral administration can be influenced by regional conditions (absorbing surface area, bacterial flora, motility, pH, mucus thickness) and food intake, all of which affect drug solubility and permeability. Therefore, it is crucial to assess the impact of these conditions on the drugability of drugs and formulations. In this study, the ability of the liposome-based mucus-PVPA in vitro permeability model to handle relevant intestinal pH conditions was evaluated, together with the investigation on the pH-dependent solubility and permeability profiles of five model drugs.

View Article and Find Full Text PDF

The mucus layer covering all mucosal surfaces in our body is the first barrier encountered by drugs before their potential absorption through epithelial tissues, and could thus affect the drugs' permeability and their effectiveness. Therefore, it is of key importance to have in vitro permeability models that can mimic this specific environment. For this purpose, the novel mucus phospholipid vesicle-based permeation assay (mucus-PVPA) has been developed and used for permeability screening of drugs and formulations.

View Article and Find Full Text PDF

Objective: The aim of the present study was to study the oral performance of furosemide in neonates and young infants using a newly developed in vitro model simulating digestion and drug solubilization in the gastrointestinal (GI) tract of the human neonate and young infant population (age 0-2months).

Methods: The utilized in vitro model was designed to mimic the digestion and drug solubilization processes occurring in the stomach, and the small intestine of the neonate and young infant population, using physiologically relevant media, volumes and digestive enzymes. Overall the experimental model setup was based on the dynamic in vitro lipolysis model previously described by Fernandez et al.

View Article and Find Full Text PDF