Publications by authors named "Mette C Dekkers"

Type 1 diabetes (T1D) is a chronic autoimmune disorder characterised by an autoimmune response specifically mounted against the insulin-producing beta cells. Within the islet, high cellular connectivity and extensive vascularisation facilitate intra-islet communication and direct crosstalk with the surrounding tissues and the immune system. During the development of T1D, cytokines and extracellular vesicles released by beta cells can contribute to the recruitment of immune cells, further amplifying autoimmunity and aggravating beta cell damage and dysfunction.

View Article and Find Full Text PDF

Objective: Beta cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In recent years, the role played by beta cells in the development of T1D has evolved from passive victims of the immune system to active contributors in their own destruction. We and others have demonstrated that perturbations in the islet microenvironment promote endoplasmic reticulum (ER) stress in beta cells, leading to enhanced immunogenicity.

View Article and Find Full Text PDF

End stage renal disease is an increasing problem worldwide driven by aging of the population and increased prevalence of metabolic disorders and cardiovascular disease. Currently, kidney transplantation is the only curative option, but donor organ shortages greatly limit its application. Regenerative medicine has the potential to solve the shortage by using stem cells to grow the desired tissues, like kidney tissue.

View Article and Find Full Text PDF

Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. Accumulating evidence suggests the engagement of cellular stress during the initial stage of the disease, preceding destruction and triggering immune cell infiltration. While the role of the endoplasmic reticulum (ER) in this process has been largely described, the participation of the other cellular organelles, particularly the mitochondria which are central mediator for beta-cell survival and function, remains poorly investigated.

View Article and Find Full Text PDF