Publications by authors named "Mette Bentsen"

Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle and undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously.

View Article and Find Full Text PDF
Article Synopsis
  • Developmental transcription factors, like PBX1, function in complex networks whose specificity in cells and tissues remains unclear.
  • Through various genomic techniques, the study revealed that PBX1 interacts with multiple partners, including TCF3 and TCF4, which play important roles in adult neurogenesis.
  • The research highlights a potential cooperation between PBX1 and TCF3 in cell proliferation, suggesting their interaction may also be relevant in leukemia, particularly due to the presence of a TCF3::PBX1 fusion in a subtype of acute lymphoblastic leukemia.
View Article and Find Full Text PDF

In higher organisms, individual cells respond to signals and perturbations by epigenetic regulation and transcriptional adaptation. However, in addition to shifting the expression level of individual genes, the adaptive response of cells can also lead to shifts in the proportions of different cell types. Recent methods such as scRNA-seq allow for the interrogation of expression on the single-cell level, and can quantify individual cell type clusters within complex tissue samples.

View Article and Find Full Text PDF

Failure of proper ventricular trabeculation is often associated with congenital heart disease. Support from endocardial cells, including the secretion of extracellular matrix and growth factors is critical for trabeculation. However, it is poorly understood how the secretion of extracellular matrix and growth factors is initiated and regulated by endocardial cells.

View Article and Find Full Text PDF

Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification.

View Article and Find Full Text PDF

In mice, exit from the totipotent two-cell (2C) stage embryo requires silencing of the 2C-associated transcriptional program. However, the molecular mechanisms involved in this process remain poorly understood. Here we demonstrate that the 2C-specific transcription factor double homeobox protein (DUX) mediates an essential negative feedback loop by inducing the expression of DUXBL to promote this silencing.

View Article and Find Full Text PDF

Background: Trabeculation, a key process in early heart development, is the formation of myocardial trabecular meshwork. The failure of trabeculation often leads to embryonic lethality. Support from endocardial cells, including the secretion of extracellular matrix (ECM) and growth factors is critical for trabeculation; however, it is unknown how the secretion of ECM and growth factors is initiated and regulated by endocardial cells.

View Article and Find Full Text PDF

Cooperativity between transcription factors is important to regulate target gene expression. In particular, the binding grammar of TFs in relation to each other, as well as in the context of other genomic elements, is crucial for TF functionality. However, tools to easily uncover co-occurrence between DNA-binding proteins, and investigate the regulatory modules of TFs, are limited.

View Article and Find Full Text PDF

Data visualization and interactive data exploration are important aspects of illustrating complex concepts and results from analyses of omics data. A suitable visualization has to be intuitive and accessible. Web-based dashboards have become popular tools for the arrangement, consolidation, and display of such visualizations.

View Article and Find Full Text PDF

Targeting the coding genome to introduce nucleotide deletions/insertions via the CRISPR/Cas9 technology has become a standard procedure. It has quickly spawned a multitude of methods such as prime editing, APEX proximity labeling, or homology directed repair, for which supporting bioinformatics tools are, however, lagging behind. New CRISPR/Cas9 applications often require specific gRNA design functionality, and a generic tool is critically missing.

View Article and Find Full Text PDF

While footprinting analysis of ATAC-seq data can theoretically enable investigation of transcription factor (TF) binding, the lack of a computational tool able to conduct different levels of footprinting analysis has so-far hindered the widespread application of this method. Here we present TOBIAS, a comprehensive, accurate, and fast footprinting framework enabling genome-wide investigation of TF binding dynamics for hundreds of TFs simultaneously. We validate TOBIAS using paired ATAC-seq and ChIP-seq data, and find that TOBIAS outperforms existing methods for bias correction and footprinting.

View Article and Find Full Text PDF

Rationale: The adult human heart is an organ with low regenerative potential. Heart failure following acute myocardial infarction is a leading cause of death due to the inability of cardiomyocytes to proliferate and replenish lost cardiac muscle. While the zebrafish has emerged as a powerful model to study endogenous cardiac regeneration, the molecular mechanisms by which cardiomyocytes respond to damage by disassembling sarcomeres, proliferating, and repopulating the injured area remain unclear.

View Article and Find Full Text PDF

Motivation: High throughput (HT) screens in the omics field are typically analyzed by automated pipelines that generate static visualizations and comprehensive spreadsheet data for scientists. However, exploratory and hypothesis driven data analysis are key aspects of the understanding of biological systems, both generating extensive need for customized and dynamic visualization.

Results: Here we describe WIlsON, an interactive workbench for analysis and visualization of multi-omics data.

View Article and Find Full Text PDF