New SARS-CoV-2 lineages continue to evolve and may exhibit new characteristics regarding host cell entry efficiency and potential for antibody evasion. Here, employing pseudotyped particles, we compared the host cell entry efficiency, ACE2 receptor usage, and sensitivity to antibody-mediated neutralization of four emerging SARS-CoV-2 lineages, KP.2, KP.
View Article and Find Full Text PDFThe COVID-19 pandemic, caused by SARS-CoV-2, demonstrated that zoonotic transmission of animal sarbecoviruses threatens human health but the determinants of transmission are incompletely understood. Here, we show that most spike (S) proteins of horseshoe bat and Malayan pangolin sarbecoviruses employ ACE2 for entry, with human and raccoon dog ACE2 exhibiting broad receptor activity. The insertion of a multibasic cleavage site into the S proteins increased entry into human lung cells driven by most S proteins tested, suggesting that acquisition of a multibasic cleavage site might increase infectivity of diverse animal sarbecoviruses for the human respiratory tract.
View Article and Find Full Text PDFIn July/August 2023, the highly mutated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) BA.2.86 lineage emerged and its descendant JN.
View Article and Find Full Text PDFTransmissibility and immune evasion of the recently emerged, highly mutated SARS-CoV-2 BA.2.87.
View Article and Find Full Text PDFBA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.
View Article and Find Full Text PDFBackground: Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown.
Methods: Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses.
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitates viral entry into host cells and is the key target for neutralizing antibodies. The SARS-CoV-2 lineage B.1.
View Article and Find Full Text PDFHaemodialysis patients respond poorly to vaccination and continue to be at-risk for severe COVID-19. Therefore, dialysis patients were among the first for which a fourth COVID-19 vaccination was recommended. However, targeted information on how to best maintain immune protection after SARS-CoV-2 vaccinations in at-risk groups for severe COVID-19 remains limited.
View Article and Find Full Text PDFHeterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine.
View Article and Find Full Text PDFBMC Infect Dis
April 2022
Background: Immunocompromised people (ICP) and elderly individuals (older than 80 years) are at increased risk for severe coronavirus infections. To protect against serious infection with SARS-CoV-2, ICP are taking precautions that may include a reduction of social contacts and participation in activities which they normally enjoy. Furthermore, for these people, there is an uncertainty regarding the effectiveness of the vaccination.
View Article and Find Full Text PDFBackground & Aims: Nonalcoholic fatty liver disease (NAFLD) is a growing concern in the aging population with human immunodeficiency virus (HIV). Screening for NAFLD is recommended in patients with metabolic risk factors or unexplained transaminitis. This study aimed to prospectively assess the prevalence and associated factors of liver steatosis and advanced fibrosis (AF) in HIV-monoinfected patients at risk of NAFLD.
View Article and Find Full Text PDFFront Immunol
April 2022
Evaluating long-term protection against SARS-CoV-2 variants of concern in convalescing individuals is of high clinical relevance. In this prospective study of a cohort of 46 SARS-CoV-2 patients infected with the Wuhan strain of SARS-CoV-2 we longitudinally analyzed changes in humoral and cellular immunity upon early and late convalescence. Antibody neutralization capacity was measured by surrogate virus neutralization test and cellular responses were investigated with 31-colour spectral flow cytometry.
View Article and Find Full Text PDFPatients undergoing chronic hemodialysis were among the first to receive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations because of their increased risk for severe coronavirus disease and high case-fatality rates. By using a previously reported cohort from Germany of at-risk hemodialysis patients and healthy donors, where antibody responses were examined 3 weeks after the second vaccination, we assessed systemic cellular and humoral immune responses in serum and saliva 4 months after vaccination with the Pfizer-BioNTech BNT162b2 vaccine using an interferon-γ release assay and multiplex-based IgG measurements. We further compared neutralization capacity of vaccination-induced IgG against 4 SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, and Delta) by angiotensin-converting enzyme 2 receptor-binding domain competition assay.
View Article and Find Full Text PDFSince its declaration as a pandemic in March 2020, SARS-CoV-2 has infected more than 217 million people worldwide and despite mild disease in the majority of the cases, more than 4.5 million cases of COVID-19-associated death have been reported as of September 2021. The question whether recovery from COVID-19 results in prevention of reinfection can be answered with a "no" since cases of reinfections have been reported.
View Article and Find Full Text PDF