The hemocompatibility of vascular grafts made from poly(ethylene terephthalate) (PET) is insufficient due to the rapid adhesion and activation of blood platelets that occur upon incubation with whole blood. PET polymer was treated with NH radicals created by passing ammonia through gaseous plasma formed by a microwave discharge, which allowed for functionalization with amino groups. X-ray photoelectron spectroscopy characterization using derivatization with 4-chlorobenzaldehyde indicated that approximately 4% of the -NH₂ groups were associated with the PET surface after treatment with the gaseous radicals.
View Article and Find Full Text PDFProtein adhesion and cell response to plasma-treated polymer surfaces were studied. The polymer polyethylene terephthalate (PET) was treated in either an oxygen plasma to make the surface hydrophilic, or a tetrafluoromethane CF(4) plasma to make the surface hydrophobic. The plasma source was radiofrequency (RF) discharge.
View Article and Find Full Text PDFThe formation of endothelial cell monolayer on prosthetic implants has not sufficiently explored. The main reasons leading to the development of thrombosis and/or intimal hyperplasia is the lack of endothelialization. In the present work, we have studied the influence of oxygen and fluorine plasma treatment of polyethylene terephthalate (PET) polymers on human microvascular endothelial cell adhesion and proliferation.
View Article and Find Full Text PDF