The mechanism of perovskite film growth is critical for the final morphology and, thus, the performance of the perovskite solar cell. The nano-roughness of compact TiO (c-TiO) fabricated the spray pyrolysis method had a significant effect on the perovskite grain size and perovskite solar cell performance in this work. While spray pyrolysis is a low-cost and straightforward deposition technique suitable for large-scale application, it is influenced by a number of parameters, including (i) alcoholic solvent precursor, (ii) spray temperature, and (iii) annealing temperature.
View Article and Find Full Text PDFThe remarkable optoelectronic capabilities of perovskite structures enable the achievement of astonishingly high-power conversion efficiencies on the laboratory scale. However, a critical bottleneck of perovskite solar cells is their sensitivity to the surrounding humid environment affecting drastically their long-term stability. Internal additive materials together with surface passivation, polymer-mixed perovskite, and quantum dots, have been investigated as possible strategies to enhance device stability even in unfavorable conditions.
View Article and Find Full Text PDF