An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFStem cell transplantation is widely considered as a promising therapeutic approach for photoreceptor degeneration, one of the major causes of blindness. In this review, we focus on the biology of retinal stem cells (RSCs) and progenitor cells (RPCs) isolated from fetal, postnatal, and adult animals, with emphasis on those from rodents and humans. We discuss the origin of RSCs/RPCs, the markers expressed by these cells and the conditions for the isolation, culture, and differentiation of these cells in vitro or in vivo by induction with exogenous stimulation.
View Article and Find Full Text PDFTelomere shortening limits the proliferative lifespan of human cells by activation of DNA damage pathways, including upregulation of the cell cycle inhibitor p21 (encoded by Cdkn1a, also known as Cip1 and Waf1)) (refs. 1-5). Telomere shortening in response to mutation of the gene encoding telomerase is associated with impaired organ maintenance and shortened lifespan in humans and in mice.
View Article and Find Full Text PDFMost cancer cells have an immortal growth capacity as a consequence of telomerase reactivation. Inhibition of this enzyme leads to increased telomere dysfunction, which limits the proliferative capacity of tumor cells; thus, telomerase inhibition represents a potentially safe and universal target for cancer treatment. We evaluated the potential of two thio-phosphoramidate oligonucleotide inhibitors of telomerase, GRN163 and GRN163L, as drug candidates for the treatment of human hepatoma.
View Article and Find Full Text PDFThe finding that telomere shortening limits the replicative lifespan of primary human cells has fueled speculations that telomere shortening plays a role during aging and regeneration of tissues in vivo. Support for this hypothesis comes from studies showing telomere shortening in a variety of human tissues as a consequence of aging and chronic disease. Studies in telomerase-deficient mice have given first experimental support that telomere shortening limits the replicative potential of organs and tissues in vivo and have identified telomerase as a promising target to treat regenerative disorders induced by telomere shortening.
View Article and Find Full Text PDF