Objectives: Chemotherapy-induced neutropenia in acute myeloid leukaemia (AML) is a risk factor for life-threatening infections. Early diagnosis and prompt interventions are associated with better outcomes, but the prediction of infection severity remains an open question. Recently, National Early Warning Score (NEWS) and quick sequential organ failure assessment (qSOFA) scores were proposed as warning clinical instruments predicting in-hospital mortality, but their role in the haematological context is still unknown.
View Article and Find Full Text PDFBackground: Erythropoiesis-stimulating agents effectively improve the hemoglobin levels in a fraction of anemic patients with myelodysplastic syndromes (MDS). Higher doses (HD) of recombinant human erythropoietin (rhEPO) have been proposed to overcome suboptimal response rates observed in MDS patients treated with lower "standard doses" (SD) of rhEPO. However, a direct comparison between the different doses of rhEPO is lacking.
View Article and Find Full Text PDFCore binding factor (CBF) acute myeloid leukaemia (AML) represents 5-8% of all AMLs and has a relatively favourable prognosis. However, activating c-KIT mutations are reported to be associated with higher risk of relapse and shorter survival. To verify the incidence and prognostic value of c-KIT mutations in CBF AML, we retrospectively analysed bone marrow samples of 23 consecutive adult patients with de novo CBF AML [14 inv(16) and 9 t(8;21)] treated at a single institution from 2000 to 2011.
View Article and Find Full Text PDFBackground: Arsenic Trioxide (ATO) is effective in about 20% of patients with myelodysplasia (MDS); its mechanisms of action have already been evaluated in vitro, but the in vivo activity is still not fully understood. Since ATO induces apoptosis in in vitro models, we compared the expression of 93 apoptotic genes in patients' bone marrow before and after ATO treatment. For this analysis, we selected 12 patients affected by MDS who received ATO in combination with Ascorbic Acid in the context of the Italian clinical trial NCT00803530, EudracT Number 2005-001321-28.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are a heterogeneous disorder of the hematopoietic stem cells, frequently characterized by anemia and transfusion dependency. In low-risk patients, transfusion dependency can be long lasting, leading to iron overload. Iron chelation therapy may be a therapeutic option for these patients, especially since the approval of oral iron chelators, which are easier to use and better accepted by the patients.
View Article and Find Full Text PDFBackground: Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly.
View Article and Find Full Text PDFImportance Of The Field: The deregulated tyrosine kinase activity of BCR-ABL has been demonstrated to be necessary and sufficient to maintain leukemia phenotype of chronic myeloid leukemia (CML) which, therefore, represents a unique model for the development of molecular targeted therapy and the first disease in which the tyrosine kinase inhibitors (TKIs) completely changed the therapeutical approach. The impressive results of TKIs in this model have been overshadowed by the development of clinical resistance.
Areas Covered In This Review: This review focuses on clinical results with imatinib therapy and second generation TKIs.
Core-binding factor (CBF) leukemias are characterized by a high degree of sensitivity to high-dose cytarabine (ARA-C) treatment and by a relatively favorable prognosis compared with most other forms of adult acute myeloid leukemia (AML). The molecular basis of the response to chemotherapy is still being analyzed. The proteinase 3 (PR3) gene codes for a serine protease with a broad spectrum of proteolytic activity.
View Article and Find Full Text PDFThe Wilms' tumor gene WT1 is a reliable marker for minimal residual disease assessment in acute leukemia patients. The study was designed to demonstrate the potential use of WT1 to establish quality of remission in acute leukemia patients for early identification of patients at high risk of relapse. A prospective study based on a quantitative Real-Time PCR (TaqMan) assay in 562 peripheral blood samples collected from 82 acute leukemia patients at diagnosis and during follow-up was established.
View Article and Find Full Text PDFMutations in nucleophosmin (NPM) exon 12 and the resulting delocalization of NPM into the cytoplasm are the most specific and frequent cellular events in acute myeloid leukemia patients (AML) with normal karyotype. Cytoplasmatic NPM (NPMc+) is associated with responsiveness to chemotherapy and better prognosis. The activation of nuclear factor-kappaB (NF-kappaB) has been demonstrated to occur in a subset of AML patients and is thought to induce resistance to many chemotherapeutical agents.
View Article and Find Full Text PDFWe evaluated safety and efficacy of imatinib (600 mg) in 36 c-KIT+ acute myeloid leukemia patients not amenable to receive conventional chemotherapy. No patient achieved complete remission. One patient obtained a hematologic improvement (platelet increase with transfusion independence).
View Article and Find Full Text PDFIdiopathic hypereosinophilic syndromes (HES) comprise a spectrum of indolent to aggressive diseases characterized by persistent hypereosinophilia. Hypereosinophilia can result from the presence of a defect in the hematopoietic stem cell giving rise to eosinophilia, it can be present in many myeloproliferative disorders or alternatively it may be a reactive form, secondary to many clinical conditions. The hybrid gene FIP1L1-PDGRFalpha was identified in a subset of patients presenting with HES or chronic eosinophilic leukemia (CEL).
View Article and Find Full Text PDFRecent advances in molecular genetics have increased knowledge regarding the mechanisms leading to myelodysplastic syndrome (MDS), secondary acute myeloid leukemia (AML), and therapy-induced MDS. Many genetic defects underlying MDS and AML have been identified thereby allowing the development of new molecular-targeted therapies. Several new classes of drugs have shown promise in early clinical trials and may probably alter the standard of care of these patients in the near future.
View Article and Find Full Text PDFImatinib represents at present the most attractive therapy for BCR-ABL positive leukemias, even though a percentage of CML patients develop resistance to this compound. For these resistant patients a therapeutic approach based on a combination of drugs is more likely to be effective. In the last years, constitutive NF-kappaB/Rel activity has been demonstrated in several hematological malignancies.
View Article and Find Full Text PDFBackground: The authors investigated the efficacy and safety of the histone deacetylase inhibitors valproic acid (VPA) and all-trans retinoic acid (ATRA) as differentiation agents in a cohort of older, poor-risk patients with acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS).
Methods: Twenty older patients with recurrent or refractory AML or MDS were treated in a Phase II protocol with sequential VPA and ATRA therapy. VPA was started at a dose of 10 mg/kg per day and then escalated to achieve the serum concentration of 45-100 microg/mL.
Progress in understanding the molecular basis of signal transmission and transduction has contributed substantially to clarifying the mechanisms of leukemogenesis and of leukemia progression and has led to the identification of a number of specific molecular targets for treatment. Chronic myeloid leukemia (CML) has provided one of the best models, as the identification of a leukemia-specific hybrid tyrosine kinase (BCR-ABL, p210, p190) has led to the identification and the successful therapeutic application of a powerful tyrosine kinase inhibitor, imatinib. The BCR-ABL fusion gene is the result of a reciprocal translocation between the long arms of chromosomes 9 and 22, t(9;22)(q34;q11), which characterizes more than 95% of the cases of CML.
View Article and Find Full Text PDFEfforts made during the last few years have helped unravel the complex pathogenesis of the myelodysplastic syndromes (MDS). A large number of studies, made possible by the introduction of newer technologies, have led to major progress in understanding the heterogeneous genetic and biological abnormalities contributing to the development and progression of myelodysplasia. Better insights into these pathogenetic processes will aid the development of newer and more successful therapies for MDS patients.
View Article and Find Full Text PDFBackground: The objective of the current study was to verify the ability to predict response to imatinib therapy using in vitro assays to evaluate the inhibition of Wilms tumor gene (WT1) expression and colony growth after samples obtained from patients with chronic myelogenous leukemia (CML) before the start of treatment were subjected to short-term incubation with imatinib.
Methods: WT1 transcript levels and colony growth in bone marrow (BM) samples from 23 patients with CML that was later identified as being responsive to imatinib and from 13 patients with CML that was later identified as not being responsive to imatinib were evaluated after incubation of these samples with imatinib at a concentration of 1 microM for 18 hours. In addition, real-time quantitative polymerase chain reaction (RQ-PCR) analysis of WT1 expression was performed during follow-up, and the results were analyzed for associations with cytogenetic response and with BCR/ABL transcript levels as determined using RQ-PCR analysis.