A vast body of literature has established GRK2 as a key player in the development and progression of heart failure. Inhibition of GRK2 improves cardiac function post injury in numerous animal models. In recent years, discovery of several non-canonical GRK2 targets has expanded our view of this kinase.
View Article and Find Full Text PDFCardiomyopathy frequently complicates sepsis and is associated with increased mortality. Increased cardiac oxidative stress and mitochondrial dysfunction have been observed during sepsis, but the mechanisms responsible for these abnormalities have not been determined. We hypothesized that NADPH oxidase 2 (NOX2) activation could be responsible for sepsis-induced oxidative stress and cardiomyopathy.
View Article and Find Full Text PDFRationale: Fatty acid oxidation is transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)α and under normal conditions accounts for 70% of cardiac ATP content. Reduced Ppara expression during sepsis and heart failure leads to reduced fatty acid oxidation and myocardial energy deficiency. Many of the transcriptional regulators of Ppara are unknown.
View Article and Find Full Text PDFBackground: The relative role of acute myocardial ischemia and infarction in ventricular arrhythmogenesis is incompletely understood. We compared the arrhythmia pattern after ischemia/infarction to that observed after direct myocardial necrosis without preceding ischemia in rats.
Methods: Coagulation necrosis was induced in Wistar rats (n=20, 280±3 g) by radiofrequency current application (for 15 s) from a 4-mm-tip ablation catheter.