Publications by authors named "Mesbah-Uddin M"

Fertility is an economically important trait in livestock. Poor fertility in dairy cattle can be due to loss-of-function variants affecting any essential gene that causes early embryonic mortality in homozygotes. To identify fertility-associated quantitative trait loci, we performed single-marker association analyses for 8 fertility traits in Holstein, Jersey, and Nordic Red Dairy cattle using imputed whole-genome sequence variants including SNPs, indels, and large deletion.

View Article and Find Full Text PDF

Haplotypes that are common in a population but not observed as homotypes in living animals may harbor lethal alleles that compromise embryo survival. In this study, we searched for homozygous-deficient haplotypes in the genomes of 19,309 Nordic Red Dairy (RDC) and 4,291 Danish Jersey (JER) cattle genotyped using the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA).

View Article and Find Full Text PDF

A genome scan for homozygous haplotype deficiency coupled with whole-genome sequence data analysis is a very effective method to identify embryonic lethal mutations in cattle. Among other factors, the power of the approach depends on the availability of a greater amount of genotyping and sequencing data. In the present study, we analyzed the largest known panel of Illumina BovineSNP50 (Illumina Inc.

View Article and Find Full Text PDF

Genotype imputation, often focused on SNP and small insertions and deletions (indels; size ≤50 bp), is a crucial step for association mapping and estimation of genomic breeding values. Here, we present strategies to impute genotypes for large chromosomal deletions (size >50 bp), along with SNP and indels in cattle. The pipelines include a strategy for extending the whole-genome sequence reference panel for large deletions, a 2-step genotype refinement approach using Beagle4 and SHAPEIT2 software, and finally, joint imputation of SNP, indels, and large deletions to the existing SNP array-typed population using Minimac3 software.

View Article and Find Full Text PDF

Widespread use of a limited number of elite sires in dairy cattle breeding increases the risk of some deleterious allelic variants spreading in the population. Genomic data are being used to detect relatively common (frequency >1%) haplotypes that never occur in the homozygous state in live animals. Such haplotypes likely include recessive lethal or semilethal alleles.

View Article and Find Full Text PDF

We scanned the genome of 77,815 Normande cattle with different Illumina SNP chips (Illumina Inc., San Diego, CA) to map recessive embryonic lethal mutations using homozygous haplotype deficiency. We detected 2 novel haplotypes on chromosomes 11 and 24 but did not confirm 6 previously reported haplotypes.

View Article and Find Full Text PDF

Large genomic deletions are potential candidate for loss-of-function, which could be lethal as homozygote. Analysing whole genome data of 175 cattle, we report 8,480 large deletions (199 bp-773 KB) with an overall false discovery rate of 8.8%; 82% of which are novel compared with deletions in the dbVar database.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) for many complex diseases, including inflammatory bowel disease (IBD), produced hundreds of disease-associated loci-the majority of which are noncoding. The number of GWAS loci is increasing very rapidly, but the process of translating single nucleotide polymorphisms (SNPs) from these loci to genomic medicine is lagging. In this study, we investigated 4,734 variants from 152 IBD associated GWAS loci (IBD associated 152 lead noncoding SNPs identified from pooled GWAS results + 4,582 variants in strong linkage-disequilibrium (LD) (r2 ≥0.

View Article and Find Full Text PDF