Publications by authors named "Mervin M Pieterse"

Background: To evaluate the clinical performance and effectiveness of a multiplex apolipoprotein panel in the context of cardiovascular precision diagnostics, clinical samples of patients with recent acute coronary syndrome in the ODYSSEY OUTCOMES trial were measured by quantitative clinical chemistry proteomics (qCCP). The ISO15189-accredited laboratory setting, including the total testing process (TTP), served as a foundation for this study. Consequently, tailored quality assurance measures needed to be designed and implemented to suit the demands of a multiplex LC-MS/MS test.

View Article and Find Full Text PDF

Background: The 2022 consensus statement of the European Atherosclerosis Society (EAS) on lipoprotein(a) (Lp(a)) recognizes the role of Lp(a) as a relevant genetically determined risk factor and recommends its measurement at least once in an individual's lifetime. It also strongly urges that Lp(a) test results are expressed as apolipoprotein (a) (apo(a)) amount of substance in molar units and no longer in confounded Lp(a) mass units (mg/dL or mg/L). Therefore, IVD manufacturers should transition to molar units.

View Article and Find Full Text PDF

Kidney injury is a complication frequently encountered in hospitalized patients. Early detection of kidney injury prior to loss of renal function is an unmet clinical need that should be targeted by a protein-based biomarker panel. In this study, we aim to quantitate urinary kidney injury biomarkers at the picomolar to nanomolar level by liquid chromatography coupled to tandem mass spectrometry in multiple reaction monitoring mode (LC-MRM-MS).

View Article and Find Full Text PDF

Protein mass spectrometry (MS) is an enabling technology that is ideally suited for precision diagnostics. In contrast to immunoassays with indirect readouts, MS quantifications are multiplexed and include identification of proteoforms in a direct manner. Although widely used for routine measurements of drugs and metabolites, the number of clinical MS-based protein applications is limited.

View Article and Find Full Text PDF

Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17, isolated from a 3000-m deep geothermal water reservoir.

View Article and Find Full Text PDF

Background: Microbial production of nitrogen containing compounds requires a high uptake flux and assimilation of the N-source (commonly ammonium), which is generally coupled with ATP consumption and negatively influences the product yield. In the industrial workhorse Saccharomyces cerevisiae, ammonium (NH) uptake is facilitated by ammonium permeases (Mep1, Mep2 and Mep3), which transport the NH ion, resulting in ATP expenditure to maintain the intracellular charge balance and pH by proton export using the plasma membrane-bound H-ATPase.

Results: To decrease the ATP costs for nitrogen assimilation, the Mep genes were removed, resulting in a strain unable to uptake the NH ion.

View Article and Find Full Text PDF

The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved.

View Article and Find Full Text PDF