D-Xylonic acid is a versatile platform chemical with reported applications as complexing agent or chelator, in dispersal of concrete, and as a precursor for compounds such as co-polyamides, polyesters, hydrogels and 1,2,4-butanetriol. With increasing glucose prices, D-xylonic acid may provide a cheap, non-food derived alternative for gluconic acid, which is widely used (about 80 kton/year) in pharmaceuticals, food products, solvents, adhesives, dyes, paints and polishes. Large-scale production has not been developed, reflecting the current limited market for D-xylonate.
View Article and Find Full Text PDFd-Xylonate was produced from d-xylose using Kluyveromyces lactis strains which expressed the gene for NADP(+)-dependent d-xylose dehydrogenase from Trichoderma reesei (xyd1). Up to 19 ± 2g d-xylonatel(-1) was produced when K. lactis expressing xyd1 was grown on 10.
View Article and Find Full Text PDFSaccharomyces cerevisiae was engineered to produce D-xylonate by introducing the Trichoderma reesei xyd1 gene, encoding a D-xylose dehydrogenase. D-xylonate was not toxic to S. cerevisiae, and the cells were able to export D-xylonate produced in the cytoplasm to the supernatant.
View Article and Find Full Text PDFPhosphoglucose isomerase-deficient (pgi1) strains of Saccharomyces cerevisiae were studied for the production of D-ribose and ribitol from D-glucose via the intermediates of the pentose phosphate pathway. Overexpression of the genes coding for NAD(+)-specific glutamate dehydrogenase (GDH2) of S. cerevisiae or NADPH-utilising glyceraldehyde-3-phosphate dehydrogenase (gapB) of Bacillus subtilis enabled growth of the pgi1 mutant strains on D-glucose.
View Article and Find Full Text PDFRecombinant Saccharomyces cerevisiae strains that produce the sugar alcohols xylitol and ribitol and the pentose sugar D-ribose from D-glucose in a single fermentation step are described. A transketolase-deficient S. cerevisiae strain accumulated D-xylulose 5-phosphate intracellularly and released ribitol and pentose sugars (D-ribose, D-ribulose, and D-xylulose) into the growth medium.
View Article and Find Full Text PDFThe baker's yeast Saccharomyces cerevisiae is generally classified as a non-xylose-utilizing organism. We found that S. cerevisiae can grow on D-xylose when only the endogenous genes GRE3 (YHR104w), coding for a nonspecific aldose reductase, and XYL2 (YLR070c, ScXYL2), coding for a xylitol dehydrogenase (XDH), are overexpressed under endogenous promoters.
View Article and Find Full Text PDF