Publications by authors named "Mervi Eskelinen"

Previously published data suggest that the RGD-recognizing integrin, alphavbeta3, known as the vitronectin receptor, acts as a cellular receptor for RGD-containing enteroviruses, coxsackievirus A9 (CAV-9) and echovirus 9 (E-9), in several continuous cell lines as well as in primary human Langerhans' islets. As this receptor is also capable of binding the ligands by a non-RGD-dependent mechanism, we investigated whether vitronectin receptors, alpha v integrins, might act as receptors for other echoviruses that do not have the RGD motif. Blocking experiments with polyclonal anti-alphavbeta3 antibody showed that both primary human islets and a continuous laboratory cell line of green monkey kidney origin (GMK) are protected similarly from the adverse effects of several non-RGD-containing echovirus (E-7, -11, -25, -30, -32) infections.

View Article and Find Full Text PDF

An enterovirus strain (designated D207) isolated from a Slovakian diabetic child and originally serotyped as coxsackievirus A9 (CAV-9) was found to cause rapid cytolysis coinciding with severe functional damage of the surviving cells in primary cultures of human pancreatic islets. This finding prompted us to clone the isolate for full-length genome sequencing and molecular characterization as the prototype strain of CAV-9 is known to cause only minimal damage to insulin-producing beta-cells. Based on capsid-coding sequence comparisons, the isolate turned out to be echovirus 11 (E-11).

View Article and Find Full Text PDF

Coxsackievirus A9 (CAV-9) infects human rhabdomyosarcoma (RD) cells using an unidentified RGD-independent receptor. Monoclonal antibodies were prepared by immunizing mice with intact RD cells and by selecting cells from the cytopathic effect of CAV-9 for protection. Here we describe a monoclonal antibody that binds to host cell plasma membrane and protects cells from virus infection.

View Article and Find Full Text PDF