Publications by authors named "Merve Yuce"

This study investigates the potential of ellagic acid (EA) to mitigate the effects of drought and aluminum (Al) stresses in maize by examining various morpho-physiochemical parameters and gene expressions. Maize (Zea mays L.) serves as a crucial global food source, but its growth and productivity are significantly hindered by drought and aluminum (Al) stresses, which lead to impaired root development, elevated levels of reactive oxygen species (ROS), diminished photosynthetic efficiency, and reduced water and mineral absorption.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) play a central role in cellular signaling and are linked to many diseases. Accordingly, computational methods to explore potential allosteric sites for this class of proteins to facilitate the identification of potential modulators are needed. Importantly, the availability of rich structural data providing the locations of the orthosteric ligands and allosteric modulators targeting different GPCRs allows for the validation of approaches to identify new allosteric binding sites.

View Article and Find Full Text PDF

The global antibiotic resistance problem necessitates fast and effective approaches to finding novel inhibitors to treat bacterial infections. In this study, we propose a computational workflow to identify plausible high-affinity compounds from FDA-approved, investigational, and experimental libraries for the decoding center on the small subunit 30S of the E. coli ribosome.

View Article and Find Full Text PDF

Agricultural land contaminated with heavy metals such as non-biodegradable arsenic (As) has become a serious global problem as it adversely affects agricultural productivity, food security and human health. Therefore, in this study, we investigated how the administration of N-acetyl-cysteine (NAC), regulates the physio-biochemical and gene expression level to reduce As toxicity in lettuce. According to our results, different NAC levels (125, 250 and 500 μM) significantly alleviated the growth inhibition and toxicity induced by As stress (20 mg/L).

View Article and Find Full Text PDF

Experimental evidence indicated that bacterial pyruvate kinase of glycolysis can be evaluated as an alternative target to eliminate infections, while antibiotic resistance poses a global threat. Here, we use a computational workflow to reveal and investigate the potential allosteric sites of methicillin-resistant PK, which can help in designing species-specific drugs to inhibit activity of this organism. Residue interaction networks point to a known allosteric site at the small C-C interface, a potential allosteric site near the small interface (site #1), and a second potential allosteric site at the large interface (site #2).

View Article and Find Full Text PDF

The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still has serious negative effects on health, social life, and economics. Recently, vaccines from various companies have been urgently approved to control SARS-CoV-2 infections. However, any specific antiviral drug has not been confirmed so far for regular treatment.

View Article and Find Full Text PDF

The bacterial ribosomal tunnel is equipped with numerous sites highly sensitive to the course of the translation process. This study investigates allosteric pathways linking distant functional sites that collaboratively play a role either in translation regulation or recruitment of chaperones. We apply perturbation response scanning (PRS) analysis to 700 ns long and 500 ns long coarse-grained molecular dynamics simulations of and large subunits, respectively, to reveal nucleotides/residues with the ability to transmit perturbations by dynamic rationale.

View Article and Find Full Text PDF