Publications by authors named "Merve Capkın Yurtsever"

The metabolites synthesized by plants to protect themselves serves as natural antimicrobial agents used in biomaterials. In this study, avocado oil (AO), was incorporated as a plant source and natural antimicrobial agent into polycaprolactone (PCL) membranes. The effects of varying AO ratios (25, 50, and 100 wt%.

View Article and Find Full Text PDF

Antimicrobial biomaterials play important role in tissue engineering applications to protect damaged tissue from infections. The aim of this study is producing antimicrobial polycaprolactone (PCL) membranes by using a plant based antimicrobial agent. Therefore,essential oil (MEO) was investigated against ten types of microorganisms and remarkable antimicrobial activity was demonstrated.

View Article and Find Full Text PDF

In this study, gelation behavior and cytocompatibility of 2.5D chitosan hydrogels were investigated in the presence of TiO, CeO and TiO-CeO composite nanoparticles. Chemical co-precipitation method was used for nanoparticle synthesis and they were heat treated at 600 °C and 700 °C.

View Article and Find Full Text PDF

Chitosan has high biocompatibility, supports proliferation of many cells, and can be a good carrier for various growth factors. However, low attachment ratio and spheroid formation of several stem cell types on plain chitosan scaffolds/films is still a problem. In this study, it was aimed to obtain 3D scaffolds using medical grade chitosan (MC) with a high deacetylation degree (DD ≥ 92.

View Article and Find Full Text PDF

Background: PEEK is a high-performance thermoplastic that has many potential uses in orthopaedics and dentistry, and it has been shown to be a substitute for titanium (Ti) implants. However, PEEK is an inherently inert material, and that characteristic limits its cellular adhesion and bone integration. The aim of this study is to determine a suitable surface modification method for increasing the osteogenic potential of polyetheretherketone (PEEK) implants used in periodontal applications.

View Article and Find Full Text PDF

Gastric cancer (GC) is a prevalent disease worldwide with high mortality and poor treatment success. Early diagnosis of GC and forecasting of its prognosis with the use of biomarkers are directly relevant to achieve both personalized/precision medicine and innovation in cancer therapeutics. Gene expression signatures offer one of the promising avenues of research in this regard, as well as guiding drug repurposing analyses in cancers.

View Article and Find Full Text PDF

The aim of the present study is to eliminate the bioinertness of polyetheretherketone (PEEK) material and to increase its osteogenic activity by applying a number of surface modifications in order to discover the most effective method. First, the surface of the bare PEEK (B-PEEK) was mechanically modified by sandblasting (S-PEEK). As a second method, physical modification was provided by etching of B-PEEK in 10 M sodium hydroxide (NaOH) solution at 60 °C for 48 h (N-PEEK).

View Article and Find Full Text PDF

Human dental pulp stem cells (hDPSCs) are able to differentiate into dopaminergic neurons and help the maintenance of partially degenerated neurons, which makes them as an alternative cell source for treatment of Parkinsons' disease (PD) patients. Here, the effect of photobiomodulation with polychromatic light source in the near infrared (NIR) range (600-1200 nm) or low level 660 nm diode laser light on hDPSCs during dopaminergic induction was investigated. Real time RT-qPCR analysis indicated that expressions of brain derived neurotrophic factor (BDNF), glial cell line derived neurotropic factor (GNDF), matrix associated protein 2 (MAP2), nuclear receptor related 1 protein (NURR1) and dopamine transporter (DAT) were increased, especially in the first 7 days of dopaminergic induction when 660 nm laser light was applied with a total energy density of 1.

View Article and Find Full Text PDF

Nowadays, human dental pulp stem cells (hDPSCs) became more attractive for therapeutic purposes because of their high proliferation and differentiation potential. Thus, coupling the desired cellular characteristics of hDPSCs with good biomaterial properties of the chitosan scaffolds provide an interesting approach for tissue engineering applications. On the other hand, scaffold surface modification is also needed to promote stem cell adhesion since chitosan lacks adhesion motifs to support direct cell anchorage.

View Article and Find Full Text PDF

In this study, it was aimed to investigate the combinatory effect of biophysical and biochemical factors on human dental pulp stem cells' (hDPSCs) behavior. For this purpose, well-defined nanotopography of nanowells with two different pitch size of 109 nm and 341 nm were prepared on polyhydroxymethylsiloxane (PHMS) by using colloidal particles nanofabrication. The nanopatterned PHMS surfaces (PHMS/109 and PHMS/341) were subsequently used for fibronectin (Fn) adsorption.

View Article and Find Full Text PDF