The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia.
View Article and Find Full Text PDFIn recent years, there has been growing interest in harnessing anaerobic digestion technology for resource recovery from waste streams. This approach has evolved beyond its traditional role in energy generation to encompass the production of valuable carboxylic acids, especially volatile fatty acids (VFAs) like acetic acid, propionic acid, and butyric acid. VFAs hold great potential for various industries and biobased applications due to their versatile properties.
View Article and Find Full Text PDFAwareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food.
View Article and Find Full Text PDFShifting the concept of municipal wastewater treatment to recover resources is one of the key factors contributing to a sustainable society. A novel concept based on research is proposed to recover four main bio-based products from municipal wastewater while reaching the necessary regulatory standards. The main resource recovery units of the proposed system include upflow anaerobic sludge blanket reactor for the recovery of biogas (as product 1) from mainstream municipal wastewater after primary sedimentation.
View Article and Find Full Text PDFMicroalgae-based technologies can be used for the removal of organic micropollutants (OMPs) from different types of wastewater. However, the effect of wastewater characteristics on the removal is still poorly understood. In this study, the removal of sixteen OMPs by Chlorella sorokiniana, cultivated in three types of wastewater (anaerobically digested black water (AnBW), municipal wastewater (MW), and secondary clarified effluent (SCE)), were assessed.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2023
An approach based on wastewater epidemiology can be used to monitor the COVID-19 pandemic by assessing the gene copy number of SARS-CoV-2 in wastewater. In the present study, we statistically analyzed such data from six inlets of three wastewater treatment plants, covering six regions of Stockholm, Sweden, collected over an approximate year period (week 16 of 2020 to week 22 of 2021). SARS-CoV-2 gene copy number and population-based biomarker PMMoV, as well as clinical data, such as the number of positive cases, intensive care unit numbers, and deaths, were analyzed statistically using correlations and principal component analysis (PCA).
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) can be used to track the spread of SARS-CoV-2 in a population. This study presents the learning outcomes from over two-year long monitoring of SARS-CoV-2 in Stockholm, Sweden. The three main wastewater treatment plants in Stockholm, with a total of six inlets, were monitored from April 2020 until June 2022 (in total 600 samples).
View Article and Find Full Text PDFVolatile fatty acids, intermediate products of anaerobic digestion, are one of the most promising biobased products. In this study, the effects of acidic (pH 5), neutral (without pH adjustment) and alkali (pH 10) pH on production efficiency and composition of volatile fatty acids (VFAs) and bacterial community profile were analyzed. The anaerobic sequencing batch reactors were fed cheese production wastewater as substrate and inoculated by anaerobic granular seed sludge.
View Article and Find Full Text PDFProduction of targeted volatile fatty acid (VFA) composition by fermentation is a promising approach for upstream and post-stream VFA applications. In the current study, the bioaugmented mixed microbial culture by was used to produce an acetic acid dominant VFA mixture. For this purpose, anaerobic sequencing batch reactors (bioaugmented and control) were operated under pH 10 and fed by cheese processing wastewater.
View Article and Find Full Text PDFJ Environ Manage
October 2021
This study aimed to develop a novel strategy for tailor-made volatile fatty acid (VFA) composition. For this purpose, the mixed microbial culture was bioaugmented by Propionibacterium acidipropionici. Anaerobic sequencing batch reactors were operated with cheese wastewater under alkali pH.
View Article and Find Full Text PDFBio-based production of materials from waste streams is a pivotal aspect in a circular economy. This study aimed to investigate the influence of inoculum (three different sludge taken from anaerobic digestors), pH (5 & 10) and retention time on production of total volatile fatty acids (VFAs), VFA composition as well as the microbial community during anaerobic digestion of food waste. The highest VFA production was ∼22000 ± 1036 mg COD/L and 12927 ± 1029 mg COD/L on day 15 using the inoculum acclimated to food waste at pH 10 and pH 5, respectively.
View Article and Find Full Text PDFProduction of polyhydroxyalkanoates is an important field in the biorefinery as bio-alternative to conventional plastics. However, its commercialization is still limited by high production cost. In this study, a process with the potential to reduce the production cost of polyhydroxyalkanoates was proposed.
View Article and Find Full Text PDFWastewater-based epidemiology offers a cost-effective alternative to testing large populations for SARS-CoV-2 virus, and may potentially be used as an early warning system for SARS-CoV-2 pandemic spread. However, viruses are highly diluted in wastewater, and a validated method for their concentration and further processing, and suitable reference viruses, are the main needs to be established for reliable SARS-CoV-2 municipal wastewater detection. For this purpose, we collected wastewater from two European cities during the Covid-19 pandemic and evaluated the sensitivity of RT-qPCR detection of viral RNA after four concentration methods (two variants of ultrafiltration-based method and two adsorption and extraction-based methods).
View Article and Find Full Text PDFVolatile fatty acids (VFAs) has great potential for closed-loop production in dairy industries via resource recovery from waste-streams. In the current study, the transition of VFA production from batch reactor to anaerobic sequencing batch reactor (ASBR) by using cheese industry wastewater under alkali pH was evaluated with respect to seed sludge structure, microbial diversity and reactor type. The transition from the batch reactor to the ASBR demonstrated that the maximum VFA production yield (g COD/g SCOD) was comparable in two reactors (batch: 0.
View Article and Find Full Text PDFVolatile fatty acids (VFA) are one of the most promising sustainable and environmentally friendly bioproduct owing to their wide usage area and high market demand. For this reason, in this study, the evaluation of VFA production from pure and mixed bacterial cultures was aimed. Three different mixed cultures with C.
View Article and Find Full Text PDFThe aim of the study was to investigate the effects of operational parameters, inoculum type and bacterial community on mixed culture fermentation to produce one dominant acid type in the mixture of volatile fatty acids (VFA). The study was performed using three different inocula (large&small granular and slurry) with glucose under various initial pH. The VFA production efficiency reached to 0,97 (gCOD/gSCOD) by granular sludge.
View Article and Find Full Text PDFBio-based volatile fatty acid (VFA) production from waste-stream is getting attention due to increasing market demand and wide range usage area as well as its cost-effective and environmentally friendly approach. The aim of this paper is to give a comprehensive review of bio-based VFA production and recovery methods and to give an opinion on future research outlook. Effects of operation conditions including pH, temperature, retention time, type of substrate and mixed microbial cultures on VFA production and composition were reviewed.
View Article and Find Full Text PDF