A series of anionic poly(acrylamide--sodium acrylate)/poly(ethylene glycol), PAN/PEG, hybrids were conveniently synthesized free radical aqueous polymerization by integrating bentonite, kaolin, mica, graphene and silica, following a simple and eco-friendly crosslinking methodology. A comparative perspective was presented on how integrated nanofillers affect the physicochemical properties of hybrid gels depending on the differences in their structures. Among the five types of nanofillers, bentonite-integrated hybrid gel had the highest water absorbency, while graphene-integrated gel had the lowest.
View Article and Find Full Text PDFNatural polymer-based cryogenically structured hybrid gels as support matrices were prepared by constructing synergistic multiple interactions among copolymer poly(2-hydroxyethyl methacrylate--glycidyl methacrylate) and different polysaccharides; hyaluronic acid (HyA), dextrin (Dex), maltodextrin (MDex), carboxymethyl cellulose (CMC) and xanthan gum (XG). Great improvement in thermal stability was achieved in the presence of CMC and MDex. In the as-prepared state, the highest modulus is observed in HyA-doped hydrogels, while in the swollen-state, CMC-doped hydrogels have a greater modulus.
View Article and Find Full Text PDFCrosslinked poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) hybrids prepared in the same experimental condition by adding various polysaccharides of different chemical types; inulin, Na-alginate, starch and κ-Carrageenan were qualitatively compared. The results are presented to extract relevant physicochemical properties for qualitative comparison of structures within the same synthesis batch. Elastic properties and swelling degree of hybrids can be tightly regulated using different types of polysaccharides and by controlling effective cross-linking density.
View Article and Find Full Text PDFInt J Biol Macromol
December 2022
The current work is focused on the preparation of protein-mediated poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) copolymer as a self-template for in situ synthesis of hybrid gels. Gelatin, collagen, biotin, and l-arginine were used to create hybrid materials with adjustable swelling and elastic properties. Hybrid cryogels tended to swell more than hybrid hydrogels due to their porous nature.
View Article and Find Full Text PDF