White matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals.
View Article and Find Full Text PDFAligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2015
Aligning a pair of images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the choice of the mid-space. In particular, the set of possible solutions is typically affected by the constraints that are enforced on the two transformations (that deform the two images), which are to prevent the mid-space from drifting too far from the native image spaces.
View Article and Find Full Text PDFIn this paper we present a novel label fusion algorithm suited for scenarios in which different manual delineation protocols with potentially disparate structures have been used to annotate the training scans (hereafter referred to as "atlases"). Such scenarios arise when atlases have missing structures, when they have been labeled with different levels of detail, or when they have been taken from different heterogeneous databases. The proposed algorithm can be used to automatically label a novel scan with any of the protocols from the training data.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
February 2014
Multi-atlas techniques are commonplace in medical image segmentation due to their high performance and ease of implementation. Locally weighting the contributions from the different atlases in the label fusion process can improve the quality of the segmentation. However, how to define these weights in a principled way in inter-modality scenarios remains an open problem.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
February 2014
Increasing scan resolution in magnetic resonance imaging is possible with advances in acquisition technology. The increase in resolution, however, comes at the expense of severe image noise. The current approach is to acquire multiple images and average them to restore the lost quality.
View Article and Find Full Text PDFMulti-atlas label fusion is a powerful image segmentation strategy that is becoming increasingly popular in medical imaging. A standard label fusion algorithm relies on independently computed pairwise registrations between individual atlases and the (target) image to be segmented. These registrations are then used to propagate the atlas labels to the target space and fuse them into a single final segmentation.
View Article and Find Full Text PDFMany segmentation algorithms in medical image analysis use Bayesian modeling to augment local image appearance with prior anatomical knowledge. Such methods often contain a large number of free parameters that are first estimated and then kept fixed during the actual segmentation process. However, a faithful Bayesian analysis would marginalize over such parameters, accounting for their uncertainty by considering all possible values they may take.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2013
Many successful segmentation algorithms are based on Bayesian models in which prior anatomical knowledge is combined with the available image information. However, these methods typically have many free parameters that are estimated to obtain point estimates only, whereas a faithful Bayesian analysis would also consider all possible alternate values these parameters may take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian segmentation models more accurately by using Monte Carlo sampling.
View Article and Find Full Text PDFMultimodal Brain Image Anal (2012)
January 2012
The maturity of registration methods, in combination with the increasing processing power of computers, has made multi-atlas segmentation methods practical. The problem of merging the deformed label maps from the atlases is known as label fusion. Even though label fusion has been well studied for intramodality scenarios, it remains relatively unexplored when the nature of the target data is multimodal or when its modality is different from that of the atlases.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
January 2012
Current label fusion methods enhance multi-atlas segmentation by locally weighting the contribution of the atlases according to their similarity to the target volume after registration. However, these methods cannot handle voxel intensity inconsistencies between the atlases and the target image, which limits their application across modalities or even across MRI datasets due to differences in image contrast. Here we present a generative model for multi-atlas image segmentation, which does not rely on the intensity of the training images.
View Article and Find Full Text PDF