Publications by authors named "Mert B Ozturk"

Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with an increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by reactivating the dormant human telomerase reverse transcriptase (hTERT) subunit of the telomerase holoenzyme in an iron-(Fe3+)-dependent manner and thereby drives colorectal cancers. Chemical genetic screens combined with isothermal dose-response fingerprinting and mass spectrometry identified a small molecule SP2509 that specifically inhibits Pirin-mediated hTERT reactivation in colorectal cancers by competing with iron-(Fe3+) binding.

View Article and Find Full Text PDF

Cancer-specific promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) promoters may open up avenues for development of inhibitors which specially block expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut- promoters, we generated several isogenic reporter cells driven by endogenous loci.

View Article and Find Full Text PDF

Transcriptional factors ETS1/2 and p52 synergize downstream of non-canonical NF-κB signaling to drive reactivation of the -146C>T mutant TERT promoter in multiple cancer types, but the mechanism underlying this cooperativity remains unknown. Here we report the crystal structure of a ternary p52/ETS1/-146C>T TERT promoter complex. While p52 needs to associate with consensus κB sites on the DNA to function during non-canonical NF-κB signaling, we show that p52 can activate the -146C>T TERT promoter without binding DNA.

View Article and Find Full Text PDF

Chronic inflammation is associated to 25% of cancer cases according to epidemiological data. Therefore, inhibition of inflammation-induced carcinogenesis can be an efficient therapeutic approach for cancer chemoprevention in drug development studies. It is also determined that anti-inflammatory drugs reduce cancer incidence.

View Article and Find Full Text PDF

Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes.

View Article and Find Full Text PDF

Objectives: Chronic inflammation has been known as one of the major causes of cancer progression and 25% of cancer cases initiate due to chronic inflammation according to epidemiologic data. It has been determined that chronic inflammation induces carcinogenesis through the abrogation of cell proliferation, apoptosis, and angiogenesis mechanisms. Therefore, it is believed that inhibition of inflammation-induced carcinogenic mechanisms is an efficient therapeutic strategy in drug development studies of cancer chemoprevention.

View Article and Find Full Text PDF

The telomerase ribonucleoprotein complex has a pivotal role in regulating the proliferation and senescence of normal somatic cells as well as cancer cells. This complex is comprised mainly of telomerase reverse transcriptase (TERT), telomerase RNA component (TERC) and other associated proteins that function to elongate telomeres localized at the end of the chromosomes. While reactivation of telomerase is a major hallmark of most cancers, together with the synergistic activation of other oncogenic signals, deficiency in telomerase and telomeric proteins might lead to aging and senescence-associated disorders.

View Article and Find Full Text PDF

HOXB13 is a homeobox protein that is expressed in normal adult prostate and colon tissues; however, its deregulated expression was evidenced in various malignancies. To characterize the putative role of HOXB13 in cell cycle progression, we performed overexpression and siRNA-mediated knockdown studies in PC-3 and LNCaP cells. Immunohistochemistry (IHC) analyses were also performed using formalin-fixed, paraffin-embedded tissues containing normal, H-PIN and PCa sections from 20 radical prostatectomy specimens.

View Article and Find Full Text PDF